
AA24-6 ?'-7

N AVAL POSTGRADUATE SCHOOL
Monterey, California

ELECTEP

S FEB 1819092

0 THESIS

DESIGN OF A GRAPHICAL USER INTERFACE
FOR A MULTIMEDIA DBMS:

QUERY MANAGEMENT FACILITY

by

Charles B. Peabody

September, 1991

Thesis Advisor: Vincent Y. Lum
Thesis Co-Advisor: C. Thomas Y. Wu

Approved for public release; distribution is unlimited.

Best Available Copy

~~i4 161i92-0397114 J IUmom fiffi03 1

REPORT DOCUMENTATION PAGE
1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. JECLASSlFIGATIONDOWNGRADJING SCHEDULE Approved for public release;

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

W NAME OF JEFORMLLG ORGANIZATION 6b. OFFICE SYMBOL 7& NAME OF MONITORING ORGANIZATION
Computer 9cience Dept. (it applicable) Naval Postgraduate School
Naval Postgraduate School CS37
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-500 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j (if appiable)

c. ADDRESS (City, Stae, and ZIP Cod) 10. SOURGE OF FUNDING NUMBERSPROGRAM IPROJECT ITASK IWORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

D INOF R CALUER InTEFACE FOR A MULTIMEDIA DBMS: QUERY MANAGEMENT FACLITY (u)

13b. TIME COVERED 14. DATE OF REPORT (Year. Month. Day) 15. PA COUN-
I FROM 9/89 TO 9/91 September, 1991

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Departnent of
Defense or the United States Government
17. COSATI CODES 18. SUBJECT TERMS (Corinue on reverse if necessary and it by block number)

FIELD GROUP SUB-GROUP GUI, MDBMS, Graphical Query Facility, Retrieval, Multimedia Database
Management System, User Interface.

19. ABSTRACT (Conahwe onw if nefeay andentily by block number)
This thesis presents criteria and necessary features by which to evaluate and design a good graphical user interface
(GUI) for a Multimedia Database Management System (MDBMS). This material is also applicable to a traditional
DBMS. Included in the thesis is the specification for a Query Management Facility (QMF) for a MDBMS user inter-
face. The nature and benefits of the GUI environment, requires that we consider GUI concepts early in the user inter-
face conceptualization and design. In today's DBMS user interfaces, these GUI concepts are for the most part applied
as an after-thought. This is a critical mistake. Early incorporation of GUI capabilities along with established user in-
terface principles results in a superior user interface. The QMF presented herein is one such interface. It combines the
ideas of simple operations and data flow to allow the user to specify his query. Additional concepts used include: pic-
ture of the database schema, picture of the developing query, selectable objects, direct manipulation, piecemeal query
specification, display of intermediate results and pre-defined joins. The resulting QMF is simple to use and enables
the flexible expression of the simple as well as the complex database query.

20.WWI IUTIKN/AVAILABILITY OF ABSTR ACT 21. ABSTRACT SECURITY CLA,.SICATION i

[] UNCLASSIFED/UNUMITED [] SAME AS RPT. [" DTIC USERS UNQIASSIFIED

incent I.Aso

Approved for public release; distribution is unlimited.

DESIGN OF A GRAPHICAL USER INTERFACE
FOR A MULTIMEDIA DBMS:

QUERY MANAGEMENT FACILITY

by

Charles B. Peabody

Captain, United States Marine Corps

BS., University of New Hampshire

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

Author.
Charles B.Pebd

Approved by: #1/
Vincent Y. Ljhm Thesis Advisor

C. Thomas Vu, Thesis Co-Advisor

Robert McGhee, Chairman

Department of Computer Science

' ' ' " ... m / i mi' l I f I

ABSTRACT

This thesis presents criteria and necessary features by which to evaluate and design

a good graphical user interface (GUI) for a Multimedia Database Management System

(MDBMS). This material is also applicable to a traditional DBMS. Included in the thesis is

the specification for a Query Management Facility (QMF) for a MDBMS user interface. The

nature and benefits of the GUI environment, requires that we consider GUI concepts early

in the user interface conceptualization and design. In today's DBMS user interfaces, these

GUI concepts are for the most part applied as an after-thought. This is a critical mistake.

Early incorporation of GUI capabilities along with established user interface principles

results in a superior user interface. The QMF presented herein is one such interface. It

combines the ideas of simple operations and data flow to allow the user to specify his

query. Additional concepts used include: picture of the database schema, picture of the

developing query, selectable objects, direct manipulation, piecemeal query specification,

display of intermediate results and pre-defined joins. The resulting QMF is simple to use

and enables the flexible expression of the simple as well as the complex database query.

Accesion For

NTIS CRA&I 4
DTIC TAB El
Uannouiced LU
Justificatio . .

By
Dist: iboKioon I

Dist Stco

iii1

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND 1

B. BRIEF DESCRIPTION OF OUR APPROACH 2

C. SCOPE OF THESIS 3

D. CHAPTER LAYOUT 5

II. PREVIOUS AND RELATED WORK 6

A. USER INTERFACE DESIGN 6

B. GRAPHICAL USER INTERFACES 8

C. GRAPHICAL USER INTERFACES FOR DATABASES 9

III. RESEARCH ISSUES AND FINDINGS 21

A. WHAT ARE THE CRITERIA FOR DETERMINING A GOOD
DBMS GRAPHICAL USER INTERFACE ? 22

1. Criterion 1 : The Proposed DBMS
Graphical User Interface (GUI) Must
Constitute an Improvement Over Existing
DBMS Interfaces 22

2. Criterion 2 : The Proposed DBMS GUI
Must Include the Integration of
Applicable GUI Concepts and
Capabilities 23

3. Criterion 3 : The proposed DBMS GUI
Must Support a Real-World to Database
Mapping Mechanism 25

4. Criterion 4 : The proposed DBMS GUI
Must Support Flexible Expression of
Query 26

5. Criterion 5 : The proposed DBMS GUI
Must Comply With Known User Interface
Principles 27

iv

6. Criterion 6 The Proposed DBMS GUI
Must be Extensible 27

B. WHAT ARE THE COMPONENTS OR FEATURES WHICH
MUST BE INCLUDED IN A GOOD DBMS GRAPHICAL
USER INTERFACE ? 28

1. Provide a Simple Real World-to-Database
Mapping 30

a. Feature 1 : Provide a Pictorial
View of the Database Schema 30

b. Feature 2 : Ensure the User can
Easily Understand the Basic
Building Blocks of his Database 31

c. Feature 3 : Allow Visibility of
Metadata 33

d. Feature 4 : Allow Levels of
Abstraction 35

2. Maximize the Intelligent Use of
Graphical Objects 39

e. Feature 5 : Use of Selectable
Objects 39

f. Feature 6 : Use of Automatic
Object Placement 40

g. Feature 7 : Allow Easy User
Selection and Arrangement of
Objects 41

h. Feature 8 : Use of Clearly
Differentiable Objects 42

3. Allow Stepwise Refinement of the Query
During Formulation 43

i. Feature 9 : Manipulation of Data
Flow to Achieve Objective 45

j. Feature 10 : Use of Simple
Operations 46

k. Feature 11 : Piecemeal Design and
Construction of Query 46

v

1. Feature 12 : Saving and Retrieval
of Previously Defined and Commonly
Used Joins 47

m. Feature 13 : Immediate and
Meaningful Feedback 48

4. Minimize the Effort Required of the
User 49

n. Feature 14 : Ensure the Earliest
Detection of Errors 50

o. Feature 15 : Automatically Make
Necessary Tools and Information
Available 51

p. Feature 16 : Stream-line
Repetitive Actions 53

q. Feature 17 : Use a Default Result
Format 54

C. APPLICABILITY TO MULTIMEDIA DATABASE
SYSTEMS ... 55

IV. DESCRIPTION OF GRAPHICAL QUERY MANAGEMENT
FACILITY .. 57

A. MAJOR FUNCTIONAL PARTS OF INTERFACE 57

B. SIMPLE QUERY WITH INDIRECT USE OF MULTIMEDIA
DATA .. 59

C. SIMPLE QUERY WITH DIRECT USE OF MULTIMEDIA
DATA ... 65

D. COMPLEX QUERY 68

E. AGGREGATE FUNCTIONS 72

V. CONCLUSIONS .. 114

A. APPLICABILITY OF APPROACH 114

B. STRENGTHS AND LIMITATIONS OF APPROACH 115

1. Strengths of Approach 115

2. Limitations of Approach 120

C. FUTURE WORK 122

vi

1. Implementation of the Proposed Query
Management Facility 122

2. Design and Implementation of Remaining
User Interface Components for Database 123

3. Continuing Incorporation of Evolving
Technology 124

LIST OF REFERENCES 125

INITIAL DISTRIBUTION LIST 129

vii

I. INTRODUCTION

This thesis is prepared in conjunction with the work of

other researchers working within the area of multimedia

database at the Computer Science Department of the Naval

Postgraduate School. This thesis focuses on a subset of the

issues one must consider when designing a graphical user

interface for a multimedia database. The specific topic of

interest is the query specification facility of such an

interface.

A. BACKGROUND

There are some very good graphical user interfaces

currently implemented to provide the quality of man-machine

interfaces necessary to permit an optimization of the man-

machine team. User interfaces of this quality do not exist for

databases.

User interfaces for databases have received only a small

amount of attention from the research community (ZODNIK90),

(ENDU89). Many of the published papers present valuable ideas

which are yet to appear anywhere but in a prototype form

(ENDU89). There is a technology gap between the types of

things database users are limited to as compared with the

capabilities present in user interfaces for other areas.

1

Progress has been made in many areas. In the area of

software progress has been made in graphics software,

windowing software, networking software, operating systems and

many others. In hardware progress has been made in screen

capabilities, processing speeds, direct storage capabilities,

hardware architectures and others. From the study of human

factors engineering have come advances in user interface

theory, guidelines and principles. The importance of database

user interfaces must take advantage of all the technology and

theory available and create the best user interface possible.

The full impact of database technology can only be realized

with the successful progress of user interface.

B. BRIEF DESCRIPTION OF OUR APPROACH

All database management systems have a user interface of

some sort. The goal of this thesis is to come up with a user

interface which is better, one which will also be applicable

to a multimedia database. In order to do this the latest

hardware and software technology is considered. Additionally

sound user interface principles as well as a careful and

creative consideration of user-to-database interaction within

a multinedia environment.

The user interface approach taken in this thesis uses

graphical direct manipulation as a means of facilitating the

user-to-database interactions. The proposed user interface

uses a unique approach to permit the user to express his

2

queries. The approach uses low-level data manipulation

operations and the concept of data-flow while keeping the user

close to the basic concepts of the relational data model. The

approach integrates these ideas with each other. Additionally

the 1-roposed user interface integrates other user interface

concepts and query specification ideas which have been found

in related literature.

C. SCOPR OF THISIS

This thesis is concerned with the query specification

process. In order to understand the scope of this thesis the

reader must visualize a conceptual division of database

management related functions. The functions of concern to us

are

1. schema definition/exploration

2. query specification

3. output display

Each of these functions is involved in a direct way with the

query specification process. Terms have been coined to

represent the portions of the user interface responsible for

each of these functional areas. The schema

definition/exploration is handled by a module called the

Schema Management Facility (SMF). The query specification is

handled by a module called the Query Management Facility

(QMF). The output display is handled by a module called the

3

Report Management Fawility (RMF). These names were chosen for

their descriptive value as well as their consistency.

As will become evident all three of these facilities are

discussed and at least partially described in this thesis.

This is not surprising considering the integral part they play

in query specification. It should be remembered that the focus

of this thesis is on query specification and hence only the

QMF will be described in detail. Non-query related aspects of

the SMF and the RMF will not be described.

The underlying assumption of the user interface presented

in this thesis is that the database is one based on the

relational data model. While many of the research findings

presented in Chapter 3 are valid in the more general case, the

proposed user interface presented in Chapter 4 is not. The

decision to restrict the scope in this way is based on the

usefulness and widespread acceptance of the relational data

model. This decision is also effected by the fact that the

prototype multimedia database at the core of the research

teams efforts is based on the relational data model.

While this thesis is related to user interface research

which is ultimately targeted for a prototype multimedia

database, it has a broader applicability to a data base user

interface for any relational database system. The multimedia

aspects of the interface are for the most part found in the

Report Management Facility which as stated above is not the

central aim of this thesis.

4

D. CRPTER LAYOUT

Chapter 2 discusses research conducted in the area of

graphical user interfaces for databases as well as in related

areas. Chapter 3 presents the research questions considered by

this thesis. The chapter then follows with a description of

the findings and conclusions resulting from studying and

researching these questions. Chapter 4 presents a description

of a proposed graphical user interface for a multimedia

database. This proposed interface is based on the findings

presented in chapter 3. Chapter 5 describes briefly describes

future work required in the area of graphical user interfaces

for multimedia databases. Chapter 6 provides a summary and

conclusions reached about the proposed interface. This chapter

discusses the strengths and limitations of the approach.

5

II. PREVIOUS AND RELATED WORK

This chapter groups previous and related works into three

broad areas. The first section includes those works which

relate to the broad area of user interface design for
A

automated information systems. The second group presents those

works which relate to the more specialized area of graphical

user interfaces. The third and most interesting area includes

those works which relate to graphical user interfaces for

databases.

A. USER INTERFACE DESIGN

This section presents a couple of resources which are

related to the design and development of any automated user

interface. Interactive computer systems have been in use for

some time. This implies an abundance of experience, research

and literature. Much of the available literature is relevant

to and of value when considering the design of a user

interface such as that presented in this thesis.

Sidney Smith and Jane Mosier (SMITH86) have developed a

collection of nine-hundred and forty-four guidelines for

designing user interface software. This collection of

guidelines includes general guidelines as well as very

detailed guidelines. This work is mentioned just to provide

support to the assertion that there are many guidelines and

6

principles published which one can consider when designing

user interface software. With reference material such as this

available there is no need of working design decisions in a

vacuum. It is easy to obtain ideas and opinions when designing

an interface.

Ben Schneiderman points out that prior to designing a

system one should consider two import areas. One consideration

is the nature of the user. The designer should acquire a good

feel for the eventual user of the system (i.e. target

audience). A second important consideration is the nature of

the system and its tasks for which the interface is being

built. (SHNEIDERMAN87)

Schneiderman offers a set of eight principles which apply

to user interface design. These principles provide a good

checklist for ensuring that a design has at least included

consideration of issues commonly applicable to user

interfaces. These principles, presented in Table 1, are

general in nature but as a whole they capture most of what

different authors have said in this area. These eight

principles will be considered further after the proposed DBMS

user interface is presented. They will be used during part of

the post-evaluation of the proposed interface.

7

TABLE 1 - USER INTERFACE PRINCIPLES (SHNEIDERMAN87)

1. Strive for Consistency.
2. Enable frequent users to use shortcuts.
3. Offer informative feedback.
4. Design dialogues to yield closure.
5. Offer simple error handling.
6. Permit easy reversal of actions.
7. Support Internal Locus of Control.
8. Reduce short-term memory load.

B. GRAPHICAL USER INTERFACES

Dan Heller discusses issues related to the use of

currently available graphical user interface tools. He speaks

about the high level tools used to develop user interfaces in

today's windowing environments. Heller claims that all of the

GUI tools are based on some already accepted fundamental user

interface principles (HELLER90a). This statement suggests that

by using standard GUI tools, compliance with fundamental user

interface principles is maintained. The built-in enforcement

of sound user interface principles in this case is a

beneficial side-effect of using a GUI. Heller (HELLER90a)

presents a list of graphical user interface design goals as

presented in Table 2. This list of goals was specifically

developed in relation to GUI's which tailors to the types of

concerns relevant to the GUI developed within this thesis. The

goals listed in the table will be used for the design and

evaluation of the proposed DBMS user interface.

8

TABLE 2 - IMPORTANT GOALS IN GUI DESIGN (HELLER90a)

1. Intuitive
2. Consistent
3. Conducive to Frequent Use
4. Visual Cues
5. Flexible

C. GRAPBICAL USER INTERFACES FOR DATABASES

With a graphical user interface, a data model must be

presented to the user. This data model is necessary to

facilitate his interaction with and understanding of his

database. Different data models and ideas about how to use

them for browsing, querying and working with a database have

been studied. A consistent theme presented is the clarity with

which the model must allow the user to understand his

database. Different models have been proposed. The entity-

relationship (E-R) model has been a central part of several

proposals (ELMASRI85), (PAOLO83), (ROGERS88), (WONG82),

(ZHANG83). This choice of the entity-relationship model is a

good choice and hence has also been adopted by the user

interface presented herein. These related works will each be

discussed below. Elmasri and Larson (ELMASRI85) present a

sequential query specification process whereby the user begins

his query by first specifying the entities and relationships

of interest. This is facilitated by a pictorial use of the E/R

model. Next the user causes the entities to be automatically

arranged into a hierarchy by manually selecting one of the

entities as the root entity. This assignment automatically

9

implies the structure of the remaining hierarchy since the

relationships of the initial E/R diagram are assumed to hold.

Next the user places selection conditions on first the root

entity and then the remaining entities. Based on where the

user is in the query, his conditions will have different and

difficult to foresee results. To overcome this the system

interprets the user specified condition and comes back with a

display of its own interpretation. The user then states

whether the system interpretation is what he intended with a

Yes or No. A No response from the user causes iteration of the

process. This specifying of conditions on entities is in

effect causing a selection on each relation. The user next

selects the desired attributes from each entity. These last

two steps can be reversed or interleaved. (ELMASRI85)

Selecting entities and relationships from an E-R diagram

is similar to our approach. Also the notion of pictorially

seeing the structure of the query by a graphical

representation of entities, or in our case, relations. The

remainder of the process described by Elmasri and Larson is

not considered useful (ELMASRI85). It should not be expected

that the user can define all the entities and relations at the

beginning of a complex query. This places an unacceptable

burden on the user. Additionally the user should not be forced

to conceptualize his query in the form of a hierarchy with his

identification of the root. This certainly is not intuitive.

In contrast to this our proposal uses the idea of data flow

10

from the leaves to the root of an upside-down binary tree. The

leaves or initial relations can be specified at any point

during the query. The root is the final relation which

represents the result of the query. Our approach allows the

user to think as he goes and to change his mind on the fly.

When specifying conditions in a complex query the user

should not be expected to use a syawem interpretation of his

condition for an iterative dialogue. In a sense this is like

having the user throw darts until he gets a bullseye. This

does not put the user at the locus of control. In contrast our

proposal provides meaningful feedback to the user at each

application of an operation. There is no complicated data

structure for the user to consider before applying an

operation. There is simply one or two relations which are

input to an operation. There is only one relation which is an

output to an operation. The user may then immediately see

metadata or actual data represented by this relation. If the

operation is not what he intended he can go back and retry

this single operation. There is no guessing of what the system

is doing. The system responds to each of the users actions and

immediately supplies the user with helpful feedback.

Rogers and Cattell (ROGERS88) present an implementation of

a database user interface which facilitates schema design and

database browsing. The facility called "Schemadesign" permits

the user to define a database while pictorially providing a

bit-mapped graphic display of the developing E-R semantic

11

model. This definition process encourages data normalization,

appropriate definition of keys and declaration of applicable

integrity constraints. The backend is a relational database

which assumes responsibility for supporting the maintenance of

declared integrity constraints. A second facility called

"Databrowse" is a window-based program which allows the user

to browse the schema and edit values in the database. The

browsing and displaying of data is centralized around the

concept of "entity". This means the user is at times removed

one layer above the concept of a "relation". The display of a

record for an entity may contain data from many relations with

many records from some of the relations. This display of many

records for viewing one entity results from the nature of

multi-valued attributes of a relation. Databrowse uses a

degwult form to display data about entities. The display and

its underlying database support the handling of certain types

of unformatted data. The system uses a binary data type for

storage of unformatted data within the database as well as

having a means to store pointers to files residing external to

the core back-end database. The level of support provided for

unformatted data is not described in a detailed fashion.

(ROGERS88)

The Schemadesign program described by Rogers and Cattell

is considered partially useful as a basis for integration into

the prototype interface proposed herein. This is based on

initial considerations and is not final at this point. As

12

stated previously the focus of this thesis is to present a

Query Management Facility (QMF). The interface presented in

this thesis does not include a well defined description for a

Schema Management Facility (SMF). It only presents those

considerations which must be considered. Key amongst these are

that the SMF must be based on the E-R model, capable of

supporting the relational data model and be graphical as well

as to permit graphical manipulation. Additionally the SMF must

appear functionally consistent and interactively similar with

the QMF (e.g., the user can not be expected to learn two

significantly different systems for working with one

database). On the surface it appears that the Schemadesign

program described by Rogers and Cattell meets these

guidelines. The drawback in the Schemadesign program is its

focus on entities vice relations. This adds an unnecessary

level of confusion to a user of a relational database. During

a query the user must focus on relations and be aware of all

the relations which might be a part of his query. This

includes relations representing multi-valued attributes of

entities. The QMF proposed in this thesis has the user working

with such relations the same as any other relations. This is

for the reasons of consistency and simplicity. The relation is

the common denominator for all data used in queries. The SMF

must support this same approach. (ROGERS88)

The Databrowse program mentioned in the work by Rogers and

Cattell is useful in casual browsing of the database. It does

13

not appear to support the expressiveness needed by a query

facility. It is not suitable as the query tool sought in this

thesis. The authors do mention intentions to develop a more

sophisticated query tool in the future which will be designed

to use graphics. The design decision made in the design of

Databrowse to use default forms and to work in a windowing

environment are consistent with the decisions presented in

this thesis. Databrowse works on the concept of the entity

vice the concept of relation. This is in contrast to our

proposal as explained in the paragraph above. (ROGERS88)

Wong and Kuo (WONG82) present a user interface called

GUIDE (i.e., Graphical User Interface for Database

Exploration). GUIDE is a graphical user interface for a

database which is based on a network of entity and

relationship types. The E-R model is pictorially displayed for

the user and is an integral part of the query expression

process. Queries are expressed as traversal paths on the E-R

network.

GUIDE contains several very important features which are

included in the user interface proposed in this thesis. GUIDE

permits the user to formulate his query in a piecemeal

fashion. As the user is piecing his query together he can look

at intermediate results. These features encourage database

exploration and constitute meaningful feedback. GaI=

contains a mechanism to allow the user to define varying

levels of detail in the presentation of the schema. It does

14

this by allowing the user to set the level of detail (e.g., on

a scale from one to five) and also to set the radius within

which objects are to be displayed. This radius is based on the

number of links traversed from a central object which is user

determined. GUIDE also allows the user to toggle off the

display of specific unneeded objects. Additionally GUIDE

enables the user to acquire detailed information or

explanation on a user specified object. This information

includes the display of available meta-data. These features

amount to allowing the user to deal with the desired level of

abstraction and to hide information which is not essential to

his user objectives. These features are all considered an

important part of a graphical user interface for a database.

There are a number of things which set the interface

proposed in this thesis apart from GUIDE. One difference stems

from GUIDE's presentation of the database schema and display

of the developing query both in the same picture. This over-

tasks the differentiable symbology and overworks the screen

area responsible for conveying information to the user.

Colorization of objects is used to show the user the relevant

parts (i.e., entities and relationships) of his developing

query. It appears that as pieces of a complex query begin to

overlap, the visibility of local queries as well as the

overall query are lost. Additionally as pieces of a query are

linked together, GUIDE appears to automatically build these

links. This takes the necessary feeling of control away from

15

the user. From the description of GUIDE, there is no apparent

means to resolve decisions when more than one linking

alternative exists.

GUIDE buffers the user from ideas tied solely to the

relational data model. The authors claim that concepts such as

the relational join cause the user too much memorization and

effort in explicitly specifying implied relationships.

In contrast to GUIDE, the interface proposed in this

thesis uses separate pictures to display the schema and the

developing query. At all times during the query formulation it

is made clear to the user where he is at and how the pieces of

the query fit and interact together. To a large extent this is

achieved through the use of data flow, simple operations, and

consistent meaning of displayed objects. The user is always

made to feel in control as everything occurring during the

query formulation is caused by him.

The proposed interface recognizes the additional effort

and memorization which may result when requiring the user to

use low level relational operations. This factor is mitigated

by allowing the user to use the E-R diagram to specify implied

relationships. The use of pre-defined joins and previously

defined queries is believed to more than offset the cost

associated with low-level operations. Additionally, low-level

operations permit the user to acquire an increased

understanding and appreciation for the capabilities of his

16

database. This is invaluable when confronted with the

formulation of a complex query.

Zhang and Mendelson (ZHANG83) propose a graphics based

entity-relationship query system. In their proposal the user

is presented with a picture of a database schema on a graphics

screen. Queries are formulated by pointing at nodes to be

included in the query, using a mouse. Conditions on the nodes

are specified by filling in forms. These forms are QBE-like

forms completed by typing in expressions constructed of

constants and variables. Three operations which can be

performed on relations, (i.e. union, intersection and

difference) are presented as menu options. These operations

are used to combine the results of several elementary queries.

They claim navigation is simplified in two ways, one being the

display of the diagram on the screen and the other is the use

of default connection paths. A default connection path is a

minimal connected sub-graph connecting the specified nodes.

These default connection paths are computed by the system

based on the notion of maximal objects (MAIER83). At any time

during the query formulation the user may request execution of

the query as specified and continue refining the query after

viewing the results.

Zhang and Mendelson present several very key ideas. One of

these is the notion of the incremental query formulation. This

allows the user to perform the query in a piecemeal fashion.

One restriction which appears to exist in their proposal is

17

the arbitrary combination of the relational operations. It

appears that selections, projections and joins constitute an

elementary query. Only after two or more elementary queries

are formed can the union, intersection, or difference

operations be applied. Once these operations are performed it

appears as though no further query refinement is permitted.

Our proposal overcomes this problem by maintaining that all

intermediate results are relations. By doing this it is

ensured that all operations can be performed in any order and

at any level of complexity. This is of course under the

condition that the user chosen operation makes sense on the

relation or relations chosen as operands.(ZHANG83)

Another problem present in the proposal by Zhang and

Mendelson is the non-uniformity in presentation to the user.

Some operations may only be applied through QBE-like forms,

while other operations may only be applied through menu

selection. Queries by their nature may be inherently complex.

As the user formulates the query through the user interface of

a DBMS, a simple means of expressing the complex query must be

provided. The user must be able to consistently apply database

operations on data. (ZHANG83) Our proposal ensures this is

satisfied. All operations are applied in the same manner. The

may be applied at any time and conceptually result in a

consistent action (i.e. modification of the data flow). More

will be said about this in the next chapter.

18

A well known database user interface is Query By Example

which is also known as QBE (ZLOOF75). With QBE the user is

presented with a tabular view of the database. The user begins

a query by selecting a subset of all the tables in the

database. The expressions needed to select the desired rows of

data and attributes to be disawayed are then specified with

respect to each table. The tabular format is simple to

understand but fails to communicate some of the semantics of

the data. When data from more than one table is needed, the

user must remember what attributes from what tables result in

the desired joins. There is no notion of default joins as

modeled in the E/R model. There is also no means for

identifying predefined joins. Overall the QBE approach is not

considered helpful in our quest for a good database user

interface.

The use of forms for user interfaces is not new

(WARTIK88). An interesting forms type interface for databases

is called FOSTER (MIYAO87). This is a forms-oriented user

interface using forms which are very close in format to those

used in QBE. With this interface the person performing a query

uses graphic icons, directed edges and forms to create

application programs. These application programs can then be

used to query the database. The problem with this approach is

complexity in defining forms and integrating them into the

iconic language. The entire approach requires a lot of work

and learning by the user. It appears that the user would have

19

to spend time to become quite familiar with a users manual in

order to figure out how to begin. In contrast, the user

interface presented in this thesis is quite simple. With a

small amount of learning the novice user can use the interface

to perform difficult queries in a simple manner. Information

and tools (e.g., menus) which are needed by the user are

automatically made available to the user at the appropriate

time. Guidance is provided to the user in the form of

suggested actions. As the user is performing actions a

dialogue takes place guiding the user through his work. If he

for example selects a binary operation, the interface will

ensure he chooses two appropriate operands.

Other less known models such as the Graph-Oriented Object

Database Model (GOOD) (GYSSENS90), User Data Model (MIYAO86),

and Semantic Data Model (SDM) (GOLDMAN85) have also been

proposed. A model such as GOOD does not lend itself to

concepts of the relational model, but is more suited to use

with the object-oriented data model. The User Data Model is

not considered helpful in presenting the user a clear view of

the schema. The SDM does not lend itself to the low-level

query specification approach proposed in this thesis. These

models are mentioned to highlight the fact that other models

have been looked at but the E-R model seems to be the best

available semantic data model for our purposes while working

within the realm of a relational database.

20

III. RZSARCB ISSUES AND FINDINGS

This thesis addresses two basic research questions. In

this chapter the issues and findings related to these two

research questions are presented. The two questions are

1. What are the criteria for determining a good DBMS
graphical user interface ?

2. What are the components or features which must be
included in a good DBMS graphical user interface ?

The first question relates to the establishing of a

benchmark or yardstick by which to gauge the relative quality

of a DBMS user interface. Neither a benchmark nor a set of

standards by which to gauge a DBMS user interface exists. This

question addresses the things which one might consider as part

of such a benchmark. It is an important question since if we

do not have a set of such criteria then we have no way of

evaluating and thereby progressing forward in this endeavor.

We are in a broad sense laying the groundwork for future

advancements in the area of DBMS user interfaces. This

groundwork is equally applicable to the more specialized area

of multimedia database systems.

The second question attempts to capture in a detailed way

the types of features which must be included in the design and

development of a graphical DBMS user interface. As with the

criteria mentioned above, these features include those which

21

are necessary for a user interface for a multimedia database.

As each of the features are described, a discussion and one or

more examples from the proposed DBMS GUI are presented.

The material corresponding to each of these two questions

is presented below, under the respective sub-heading.

A. WHAT ARE TRE CRITERIA FOR DETERMINING A GOOD DBMS

GRAPHICAL USER INTERFACE ?

1. Criterion 1 : The Proposed DBMS Graphical User

Interface (GUI) Must Constitute an Improvement Over Existing

DBMS Interfaces

This is not to say that current DBMS user interfaces

are not "good", in the general sense of good. Current database

user interfaces do work. The assertion made by this thesis is

there exists a graphical user interface for databases which is

better than those currently implemented. This is what we

search for. Only when such an improvement is found, is it

considered good. To know when this objective has been reached

there must be a comparison against existing database user

interfaces.

There are a number of different methods currently

implemented or proposed in literature to query a database.

These include linear query languages such as SQL and two-

dimensional methods such as OBE. One means of evaluating a new

proposal is to compare it against these other methods which

are similar in function and ask, "Is this an improvement ?" If

22

the proposed query interface is not an improvement then for

our purposes we can not classify it as a good interface. The

bottom line is we are looking for something which is

measurably better.

What does "measurably better" mean ? The problem we

encounter is there is not a standard way to measure such a

qualitative thing as a 'better interface' (WU89). This is in

part responsible for the lack of attention given this area by

computer scientists. Enhanced productivity, enjoyment by the

user, amount of learning required and number of mistakes made

by the user are some of the factors which should be considered

in this situation. This is a criterion which is best studied

within the domain of human factors engineers. For our purposes

we will not consider the scientific techniques employed by

such engineers. We will simply rely on persuasive argument

based on subjective intuition to claim we have an interface

which is an improvement. Still, the idea is valid that there

must exist a reasonable assurance that a new proposal is in

some sense an improvement in order to consider it a good DBMS

graphical user interface.

2. Criterion 2 : The Proposed DBMS GUI Must Include the

Integration of Applicable GUI Concepts and Capabilities

Another important criterion for evaluating a DBMS GUI

is the degree to which it integrates the latest GUI concepts

and capabilities. A good DBMS GUI must include integration of

those graphical user interface capabilities which through

23

their integration, make it a better interface. GUI concepts

should not be included just for the sake of inclusion. Each

concept should be carefully considered. It should be

considered in conjunction with other user interface tools and

concepts. The ultimate goal is to achieve the best overall

interface through a skillful combination of existing GUI

tools. Consistency for the user is an important goal to keep

in mind when integrating various tools (WARTIK86). It may be

the case that certain concepts and capabilities should not be

used. This case should occur only through a conscious design

decision. (ANDERSON86)

Two examples of such GUI capabilities are those

involving windowing tools and those involving Graphical Direct

Manipulation. Windowing tools includes the software which

enables such things as the creation, movement and re-sizing of

multiple windows on a terminal screen. Numerous ways of

applying windowing capabilities have been either implemented

or proposed. Graphical direct manipulation refers to the

capability to manipulate and use visual objects through the

use of a pointing device such as a mouse (KUNTZ89, SHU89).

This includes operations such as moving, re-sizing and

pointing at objects for selection purposes. A wealth of

related concepts as well as different ideas have either

already been implemented or have been proposed in research

(KUNTZ89, BRYCE86). All of the applicable concepts must be

24

considered to ensure that an interface does not exclude

something which would make it better.

3. Criterion 3 : The proposed DBMS GUI Must Support A

Real-World to Database Mapping Mechanism

This criterion refers to the effectiveness with which

a user interface allows the user to understand what is in his

database. The user presumably knows about the real world or at

least about that portion which is modeled in the database. The

user must clearly understand what is and what is not modeled

in his database. The user interface must not assume the user

knows the detailed contents of the database (ELMASRI85, pg

237). To make good use of the data the user has got to have an

appreciation for what the database does and does not contain

as well as the types of queries that it can and cannot

support. A powerful data model which captures all sorts of

meaningful information does not do any good if the user cannot

request and subsequently extract the useful information. The

user interface is what lies between the user and the data. The

user interface must allow the user to see into his database in

a way which is intuitive while at the same time map this data

to the users perception of his real-world. Another way to say

this is that the user interface must include a good mapping

mechanism which allows the user to understand the relationship

between the database and the real-world (WONG82).

25

4. Criterion 4 : The proposed DOW GUI Must Support

Flexible Zxpression of Query

The user of a DBMS may require a database to respond

to an extremely complex query. To be complete the database and

it's user interface must support the expression of and

performance of such a query (ELMASRI85, pg 238). The

expressiveness of a query language is difficult to gauge.

There is the notion of relational completeness. This refers to

the expressive power of a query language and represents the

minimum capability of any reasonable query language for the

relational data model (ULLMAN82, CODD72). A database based on

the relational data model must at a minimum be relationally

complete. There are a class of queries known as recursive

queries. A DBMS user interface must support recursive queries.

There are also a number of aggregate functions which provide

a convenient tool for the database user (e.g., count, sum,

avg. min, max). A good user interface must include the

provision of the basic aggregate functions.

There exists a deeper notion of what a database query

expression capability might support. Consider the case of a

single complex query. Assume three different users have the

need for the results of this query. There are a number of ways

to think about this query. It is reasonable to expect

different users to think about what is in essence the same

query, in different ways (ELMASRI85,pg 237). In this example,

assume that each user thinks about the query differently. A

26

database query specification facility should allow a user to

express a query in a way which he thinks about the query. The

user should not have to re-think his query in order to express

it in a way which the system will understand. In the example,

each of the three users should be able to express the query in

a way which is intuitive to him. This implies that the user

interface should support whatever formulation of the query the

user might naturally happen to express. This is considered as

flexible support of query expressions. A good DBMS user

interface must support flexible expression of queries.

5. Criterion 5 : The proposed DBMS GUI Must Comply With

Known User Interface Principles

User interfaces in general sense have been around for

a long time. Over this period a substantial amount of research

and number of studies has gone into this area. As a result a

number of guidelines and principles have been proposed. Some

of these guidelines and principles are relevant to the user

interface we consider in this thesis. A summary of some of the

more important principles and guidelines are mentioned in the

Section A of Chapter 2. A good DBMS GUI must comply with these

basic principles and guidelines.

6. Criterion 6 : The Proposed DBMS GUI Must be

Ixtensible

What constitutes a good GUI today may not constitute

a good GUI tomorrow. Things continually change and as they do,

new user interface and database concepts continue to be

27

discovered. In addition to this new hardware capabilities, and

new software capabilities continue to evolve. As these changes

occur a good GUI will grow and change with them. For this

reason, a DBMS GUI must be designed and built to grow and

change. This flexibility can only be ensured through the use

of a modular design. A user interface must be designed into

functional modules with well-defined interfaces amongst the

modules. There must also be well-defined interfaces between

the user interface modules and the underlying database. Not

only will this enhance software supportability but it will

also provide the extensibility required.

It is clear that the user is not directly aware of the

qualities of a user interface which make it extensible. This

criterion is one which supports those aspects of a user

interface of concern to those in the business of designing,

implementing and maintaining user interfaces. The implication

here is a good user interface lends itself by way of its

design to future evolution and maintenance.

B. WNAT AREZ THE COPONENTS OR FEATURES WHICH MUST BE INCLUDED

IN A GOOD DBMS GRAPHICAL USER INTERFACE ?

As previously stated the focus of this thesis is on the

user interface aspects of database query formulation. Chapter

One mentions three related functional facilities of the DBMS

user interface. The Query Management Facility is the key

facility being considered. The other two functional facilities

28

which play a key but supplemental role in query specification

are the Schema Management Facility and the Report Management

Facility. This structural overview is repeated here to aid the

reader in understanding the framework in which the following

material is presented.

This section of the chapter describes the necessary

components of a good DBMS graphical user interface. The

required components are presented as a detailed list of

features which should be a part of a good interface. This

detailed list is presented below. The features have been

arbitrarily placed into one of four groups based on the

primary benefit to be derived the feature. These four groups

are :

1. Provide a Simple Real World-to-Database Mapping

2. Maximize the Intelligent Use of Graphical Objects

3. Allow Stepwise Refinement of the Query During
Formulation

4. Minimize the Effort Required of the User

This does not mean that clean lines exist with which to

differentiate these features. It only means that this is the

arbitrary grouping that I have chosen to use. There is

significant overlap in benefit to be derived from many of the

features.

As each feature is presented below, one or more

implementation examples will be discussed. This example or

29

examples will relate each feature with one or more of three

major functional facilities of a DBMS user interface which

were mentioned above (i.e. , Query Management Facility, Schema

Management Facility, Report Management Facility).

1. Provide a Simple Real World-to-Database Mapping

This group includes features which enable the user to

easily understand his database. The assertion which belies the

entire query specification approach presented in this thesis

is the user can and should be able to easily understand his

database. The ease and effectiveness of this understanding,

depends on how good the mechanism is which allows him to make

the intellectual mapping between the real world and the model

of the real world which is represented in his database.

a. Feature 1 : Provide a Pictorial View of the

Database Schema

The Schema Management Facility (SMF) must provide

a pictorial view of the database. It is assumed here that the

database is structured in accordance with the relational data

model (RDM). In this case the choice is either to directly

present the user a picture of the database structure in a

format representative of the Relational Data Model or to use

an intermediate model which is closer to the users perception

of the world which he understands. The E-R model sufficiently

provides this intermediate model (WONG82).

The idea is that the user must be able to visually

relate the concrete aspects of his world to the abstract

30

representation in his database. A picture allows the quick and

simple communication (i.e., mapping) of the database model for

the user. The choice of the E-R model here is arguable and

other models have been proposed (MIYA086, MIYAO87, GYSSENS90).

A comparative evaluation of the different models is not within

the scope of the thesis and will not be further discussed. The

interested reader might desire to consider the proposal

presented in this thesis with the assumption of some other

conceptual model. The point is a pictorial (i.e., visual)

representation is essential. As will become evident later,

this picture will facilitate important user activities such as

selection of desired objects within the database. In light of

the assumption we have made about the availability of a high-

resolution color screen, a pictorial means of communicating

the structural and semantic state of the data-ase is

unquestionably a necessary and supportable feature.

b. Feature 2 : Ensure the User can eaeily Underatand

the Basi Building Block& of hib Databaae

In order for the user to achieve a high level of

comfort with and comprehension of his database, he must feel

comfortable with its basic building blocks. This is also

critical if he is to effectively comprehend a complete mapping

from the real world to his database. There must not be gaps or

empty holes where things mysteriously happen. As far as the

user is concerned, the relation or table is the lowest level

in his database. It is simply a grouping of related data about

31

a given entity or relationship. The table is organized into

rows and columns. The user can and should be made to feel

comfortable with this concept. The relation is the basic

building block of his database. It is also the initial, the

intermediate and the final result during the query

specification process. The user is always selecting and

performing operations on relations. There is a relation going

into each operation and a relation coming out of each

operation. It is the user's goal to complete his query by

creating the table (i.e., relation) containing the desired

data.

The Query Management Facility (QMF) must allow the

user to select objects with which he may work and also to

manipulate objects through the application of various

operations. Through graphical direct manipulation (GRDM) the

operations on objects are made easy for the user (KUNTZ89).

More will be said about GRDM later. The object with which the

user works during query formulation should be pictorial in

nature and the meaning must be something the user can easily

map to the real world. After all it is something about the

real world that the user is trying to get as a result of his

query. The pictorial objects used consistently through the QMF

are relations (i.e. tables). At every step throughout the

process of query formulation, the input as well as the result

of the query operation is a relation. These relations are

consistently displayed as rectangles. The user may think of

32

them as tables of data. In his mind he must manipulate these

tables of data to achieve his desired goal. The idea that a

table contains columns and rows of data is not a difficult

concept for the user (ULLMAN82,pg.168). A user can easily

handle the concept that his data is store in such tables. The

users ability to understand this idea has been argued in the

literature (MIYAO86) but the feeling here is that sufficient

credit must be given to even the naive user for being able to

deal with this simple concept.

c. Feature 3 : Allow Visibility of Metadata

An assertion made in this thesis is that the user

can and should understand his database. This requirement is

supported in part by Feature 1. Feature 1 provides a pictorial

display of the database schema. An additional means of

supporting the users understanding of the database is through

the availability of textual metadata. In simple terms metadata

is data about data. In this case, metadata includes such

information as the number of tuples in a relation. Other

metadata helpful to the user includes the number of attributes

in a relation and attribute type and size information. This

type of information helps provide the user with a warm feeling

about the correctness of what he is doing during the query

formulation process. It provides a sort of feedback about the

physical results of various operations performed by the user

during the query formulation process.

33

The value of metadata can best be explained

through an example. Consider for this example, the case of a

company database. A user generally has a good feel for the

nature of his data. This follows from the idea the database

reflects the users real-world. For example, assume that a

personnel clerk knows that he has in the vicinity of 200

people in Department A and about 2000 people in his entire

organization. He also knows that about 20% of the employees

are salaried employees. If he is querying his database for a

list of the people who have are "Salaried Employees in

Department A", then he has some feel for the numbers involved.

As he starts with the employee relation he may see metadata

indicating that there are 2138 rows in the relation. This

number makes sense to the clerk. After performing a selection

for those employees in Department A who are salaried he

observes that the resulting relation has 37 rows. Without much

thought the personnel clerk now has some intuitive feel for

the correctness of this portion of his query. (i.e., He

expected to see a resulting relation with somewhere between 20

and 50 rows). This is an example of the value which is

provided by meaningful feedback to the user.

An additional source of metadata is that data one

normally might find in the data dictionary. This is

information which is specified during the time of the database

schema definition. This data includes such things as sponsors

of certain attributes, or tables within the database. It may

34

also have comments explaining the practical meaning of

attributes or tables or the relationship between them. This

type of information is made available to the user in the

proposed interface.

Metadata is meaningful feedback. The proposed

interface allows the user to view this type of feedback as he

is working with the data. All of this supports the user

feeling comfortable about his perception of the correspondence

between the real world and his database.

d. Feature 4 : Allow Levels of Abstraction

Levels of abstraction is a key concept which must

be generously integrated into any good database user interface

(LEONG89). We as humans have a very limited ability to deal

with large quantities of information. Even with this fact we

have found ways to accomplish enormously complex tasks. We do

this through our innate ability to abstract from that

information which is available, the information which is

relevant to what we are doing.

This concept is applied throughout the proposed

interface. Whenever possible, the user is permitted to see

more detail or less detail as he requires. This is intended to

assist him dealing with the simple and more importantly the

complex queries which he may be required to perform. Some

applications of the levels of abstraction feature are

mentioned below.

35

Through the Schema Management Facility (SMF) the

user is presented with an E-R diagram of the database schema.

In this diagram there is a means for the user to cause the

display or non-display of the attributes. The user may also

cause the inclusion or exclusion of the relationship

cardinalities in the diagram.

As mentioned in Feature 3, the user may view the

metadata as he is formulating his query. The interface permits

the user to turn the display of this data on and off. As the

user is formulating his query, he is creating and working with

its' graphic representation. The user may view metadata as

cluttering up the picture. He may choose to see this detail

only when he is uncertain about the correctness of a

particular step. In this case, it is open to the user to

choose the desired level of abstraction.

This thesis assumes no specific level of

sophistication on the underlying relational database

management system. The user interface will however give the

user ready access to see whatever data the underlying database

maintains about the database. This includes the data which one

might find in the Data Dictionary of a large DBMS. Such things

as the owner of certain data, the long names of the

attributes, the aliases of the attributes, English

descriptions of the attributes and whatever else is available.

Similarly this claim applies to data maintained on the

relations comprising the database. Clearly this could amount

36

to a lot of information and should be available to the user

only on an on-call basis vice as a default. In this case, too

much information could be as bad as not enough.

The database underlying the user interface might

be quite large and complex. It might be used by a number of

different users each with his own interest in the database.

Even a single user might have special parts of the database

which are commonly used and others which are seldom used. For

this reason and as well as to support the other benefits of

abstraction, the capability to create customized views of the

database is required. This means, that as the user is viewing

the database schema, he is seeing the portion of the database

of concern to him. This idea ripples into the other pop-up

windows and so forth which provide quick selection menus to

permit selection of desired table names, field names, etc.

These all automatically remain consistent with the users

customized view of the database schema. The assumption is that

the user has put those items of interest into his customized

view of the schema. Since this functionality is for the most

part a product of the Schema Management Facility (SMF) the

implementation specifics will not be laid out within this

thesis. Suffice it to say that its inclusion in a good SMF is

important and we assume its presence.

Another feature which must be included in both the

Schema Management Facility (SMF) and the Query Management

Facility (QMF) is the ability to zoom in and zoom out on the

37

picture currently being displayed (WONG82). This becomes

especially important when the user is working with a large

database schema and is incrementally formulating a large

multi-step query. The surface of the terminal screen is only

so large, therefore a zoom option must be used to allow the

user to step back and get the big picture yet still be able to

zoom in to work with the necessary level of detail to

accomplish his task.

Another example of the concept of levels of

abstraction is the capability to permit implosion and

explosion of local queries and previously saved fragments to

show or hide levels of detail. As the user is incrementally

building a query he is creating building blocks which will be

a part of his final query. These are called local queries.

These same blocks might also be saved in their present form to

be used later in a different query. In a later query, these

would be called previously saved fragments. In its most

detailed form a previously saved fragment or a local query

might consist of a number of relations and edges between these

relations as well as graphic icons representing operations. To

facilitate ease of working with these building blocks, they

may be aggregated into a simple block representing the net

relation, which can then be exploded later if the user desires

to see or work with the inner detail.

38

2. Maximize the Intelligent Use of Graphical Objects

This thesis explores database user interfaces in light

of Graphical User Interfaces (GUI's). This is different from

the traditional textual displays with textual menus where the

user either types a 1, 2, or 3 corresponding with his menu

choice or types in English text in response to system prompts.

A GUI makes use of graphical objects. A graphical object is

anything displayed on the terminal screen. This includes

different types of windows, scroll bars, buttons, pictures,

icons, etc. The simple display of text data is not a graphical

object. The use of the capabilities uniquely available with

GUI's should be used to the maximum extent possible. One

should bear in mind, however, that the application of these

capabilities must be used in an intelligent manner. Some

features whlch apply this idea are presented below. (KUNTZ89)

e. Feature 5 : Use of Selectable Objectp

While formulating a query the user must make a

number of choices. He must for example decide which relations

he wants to use in the query. He must also decide which

attributes he wishes to include during a selection of the

columns to include. This type of choice can be accomplished

through pointing and clicking on a textual description of the

items on a menu presented in a pop up window. This is not a

bad approach and is an option the user has in the proposed

interface. There is another method which should be given to

the user of a DBMS GUI. As mentioned previously the use of a

39

picture of the schema is a necessary part of the interface. A

picture of the developing query is also available to the user.

These pictures are something which the interface encourages

the user to look at. The user just through using the interface

understands what is going on in the pictures. This provides

the key reason the pictures (ie graphical objects) must

provide a medium through which the user can communicate as he

develops the query. If the user wants the EMPLOYEE relation

then the user should only need to point to the EMPLOYEE object

and click. If the user wants to include the NAME and ADDRESS

attributes the user must only point to them and click. This

sort of capability to point at selectable objects must be part

of a good GUI. It provides significant savings in time and

effort over navigating and reading textual menus.

f. Feature 6 : gae of Automatic Object Placement

When graphical objects must be placed into a work

area they should be automatically placed wherever feasible.

This saves the user the time it would take to drag the item to

a position and drop it. A good example of this is included in

the proposed interface. While using the Query Management

Facility (QMF), the user points to and selects one or more

objects (i.e. relations) to serve as operands. He then points

to and selects the desired operation. The visual result is the

creation of a rectangle representing the new resulting

relation. As a rule, the desirable placement of this new

object is generally below the operand and centered. If the

40

user were placing the item he would almost always place it in

accordance with this rule. For this reason the interface

should do it for him. This saves the user the work necessary

to do this placement. To allow for the exceptions when the

user desires a different placement of objects, the interface

provides an easy to use ability to move objects. This

capability is discussed as the next feature presented below.

g. Feature 7 : Allow Zasy User Selection and Arrange-

ment of Objects

The interface must provide the user an easy means

to work with graphical objects. This is especially important

in an environment such as the proposed interface where so much

of the users attention is focused on the visual objects. Here

we are not talking about moving windows. As mentioned before

we presume that th-s activity is within the domain of a

standard window manager. This feature refers to the objects

presented in the SMF and the QMF. The QMF is providing the

user with a current picture of the state of his query. This

picture should be arranged in a way amenable to the user. If

not, the user must be able to easily rearrange it. This is

possible by allowing the user to select an object, drag it and

the drop it in its new location. Another important point

involves selection of multiple objects. Presume that the user

desires to save a piece of a large query he is working on, The

piece involves twelve objects (i.e. rectangles) on the QMF

work surface. The user must only drag the pointer around these

41

objects and then release the button to select the group of

objects. This is much easier than pointing at and clicking on

twelve separate objects.

h. Feature 8 : Use of Clearly DIfferentiable Objects

A large amount of the user's attention is drawn to

the pictorial view of the database via the SMF and to the

pictorial view of the developing query. For this reason it

must be very easy for the user to remain clear about what he

is looking at. Consider the picture of the query. The user is

looking at relations and at the flow of data between these

relations. It is easy for the user to realize that rectangles

mean relations and lines mean data flow. These are two very

different concepts represented using two very different

symbols.

There is a subtle difference amongst relations.

Some relations may represent actual relations in the database

(i.e. base relations) while others may be virtual relations in

the sense that they are derived via the application of

operations from base relations. This is a difference which

will rarely make a difference for the user but still the

difference is important. To represent this difference, the

base relations are presented in a different color from

virtual relations.

The user is frequently selecting objects during

the process of formulating his query. Rhmi objects are

selected, this special status of the object must be clearly

42

discernable to the user. The user interface uses changes in

the intensity and texture of displayed objects to ensure this

occurs.

3. Allow Stepwise Refinement of the Query During

Formulation

Each time the user approaches the database, he has an

objective to accomplish. The DBMS user interface must make the

accomplishment of this objective as easy as possible. The

users objective falls into one of three categories. First it

may be to conduct a simple query. In this case the interface

must provide him a means to perform the query in a simple and

efficient way. The second objective the user may have when

approaching the database is the formulation of a complex

query. The third and final objective the user may have is to

explore the database. These final two objectives are both

facilitated by permitting the user to perform his work

incrementally and to iterate over certain steps when necessary

(ELMASRI85, KUNTZ89, LEONG89). Both the incremental

formulation of the query and the capability to easily iterate

over a step are discussed below.

The incremental formulation of a query is essential in

enabling the user to successfully communicate and formulate a

complex query (KUNTZ89, LEONG89). Incremental query

formulation as an approach, is consistent with the way people

think when confronted with complex problems. There is a

correlation between the database users need to communicate and

43

formulate a complex query with the more general notion of

peoples need to solve complex and unfamiliar problems.

When faced with solving complex problems, people

naturally tend to break the problems into smaller, more

manageable parts. This approach is quite natural and quite

common. By considering the smaller parts of a problem a person

can overcome the general ambiguity which comes with a problem

too complex to consider as a whole. Once the person comes to

understand the component parts of a problem, he can begin to

consider the relationship between these parts. Once these

relationships are understood, the nature and comprehension of

the larger problem comes into focus. In the best case the

person is successful in understanding all the component parts

of a problem as well as all the relationships. This leads to

a complete understanding of the overall complex problem. In

the less then ideal case, the person understands only a subset

of the component parts of the problem. This case still

provides a person with a better understanding then he started

with.

Incremental query formulation makes use of this

approach of dividing and conquering complex problems. Assume

that the user has a complex query which is not easy to

communicate. The user can specify the parts of his query which

he does understand. He can then establish the relationship

between these parts. Features 9 through 13 support incremental

formulation of the query. The proposed user interface includes

44

these features and thereby provides the user a means to

incrementally formulate his query. The interface provides this

capability in a flexible and efficient way.

The capability to easily iterate over query

formulation steps must be integrated into the design of a DBMS

user interface. As the user works through the process of

formulating a complex query he must feel free to use trial and

error. If he realizes a mistake, it should be easy to go back

and try again without having to redo the work it took to get

him there. The user approaching the database with a need to

explore must be encouraged to do so. A simple and efficient

means to repeat a step with a capability to introduce a small

change does this. There are several features which should be

included in a database user interface enable and facilitate

iteration. These features are presented as features 11 through

13 below. These features all involve facilitating the action

of iterating or repeating steps while formulating the

query. (KUNTZ89, WONG82)

I. Feature 9 : Manipulation of Data Flow to Achieve

Objective

As the user formulates his query he begins at one

place, does certain things, and then ends up with a result.

The correctness of and ease of achieving the result is in a

large part dependent on the clarity with which the user can

progress through this process. The proposed query formulation

paradigm is based on a very simple concept of data flow. The

45

user begins each step of his query by specifying the relations

which contain information which is relevant to his query. This

is the beginning data. The user then applies various

operations to this data. The result of these operations is

always a relation. Data has in effect flowed from the one or

two original sources to the resulting destination. This idea

of data flow is very easy for the user to grasp.

j. Feature : 10 Uae of Simple Operations

As mentioned in feature 9, during the query

formulation data flows from a set of one or more relations to

a resulting relation. During this flow, some sort of operation

occurs on the data. This operation must be completely within

the control of the user. The operation must also be simple and

clear to the user. For this reason the basic relational

algebra operations are used as a basis for these operations.

These basic operations have been augmented to enhance and

facilitate their use. These enhancements are demonstrated in

the implementation description contained in chapter 4. When

presented in a framework of data flow the actions of these

basic operations becomes very simple and clear to the user.

The user maintains his feeling of being in control and of

working with an easily understood piece of his query.

k. Feature 11 : Piecemeal Design and Construction

Of Qavry

The DBMS user interface must permit piecemeal

query formulation so as to minimize the scope the user must

46

mentally deal with at any single moment. This reflects the way

people think when confronted with a complex or unclear

problem. This notion of piecemeal construction is supported in

several ways. The user interface allows the user to save

portions of, or entire finished queries. These pieces can then

be retrieved for use in the construction of the current query

or subsequent queries. These query fragments can be linked or

glued together to prevent the need to reinvent them. This

concept of saving, manipulation and linking of query fragments

is very similar to work done by other researchers (KUNTZ89,

WONG82). What sets this concept apart here is the way this

idea is integrated with data flow, simple operations and the

graphical environment.

1. Feature 12 : Saving and Retrieval of Previously

Defined and Commonly Used Join&

There are relationships the user observes when

viewing the database schema. These relationships are included

in the database schema because at the time of the database

design they modeled a real world relationship. An example of

this is the relationship "EMPLOYEE WORKSFOR DEPARTMENT". In

the database schema the user observes two relations and a

relationship between them (i.e. WORKSFOR). The user might use

this relationship between EMPLOYEE and DEPARTMENT on a

frequent basis. To prevent the user from having to keep

conducting the join operation each time he wants to use this

relationship, the saving and retrieval common joins is

47

possible (KEIM91). This is similar in function to saving query

fragments as mentioned above. The difference is this separate

classification allows the aggregation of a special type of

predefined operation in order to facilitate the schema-to-

query transition forawhe user. This approach falls somewhere

between the explicit specification of joins as in SQL and the

approach proposed by Elmasri and Larson (ELMASRI85). Elmasri

and Larson propose the system automatically assume the desired

relation. Their work is discussed in more detail in Chapter 2.

The benefit with this approach is it eases the work involved

in using a relationship, while at the same time not

compromising the users sense of being in control.

i. Feature 13 : Immediate and Meaningful Feedback

As the user is formulating his query in a stepwise

fashion he must be enabled to get immediate and meaningful

feedback. After each intermediate step in the query

formulation process the user must do one of two things. Either

redo the current step or to move on to the next step.

Meaningful feedback is necessary in order to assist the user

in deciding which way to go (KUNTZ89). The proposed interface

provides two examples of this feature. The first example is

the capability to view results of a query at any point in the

process. At any point the user may request to see results

which causes the system to open a results window. In the

window the user can see the data displayed in a default report

format. This display can then either be removed from the

48

screen or retained. If retained, a representation of the state

of the query at the point of execution is retained along with

the result window. The availability of such feedback allows

the user to quickly evaluate his progress and thereby decide

if he should go on to the next step or go back and repeat the

step. This capability also promotes exploration of the

database. The user can place the results windows of two

queries side by side and hence allowing him to see the results

of the difference in the two queries.

Another example of intermediate feedback involves

the display metadata. As previously mentioned the user

canawoggle on and off the display of metadata. Also previously

mentioned was the notion that the result of every operation is

a relation. Combining these allows the user to ascertain

useful information such as the numbers of rows and columns in

his resulting relation at each juncture in his query

formulation. This type of feedback serves as useful

information to the user as he tries to evaluate his progress.

4. Minimize the Effort Required of the User

Effort required of the user refers to any work which

the user must perform in order to accomplish his objective.

This includes anything which causes the user to spend time,

perform movement, or memorization. Many of the features

already mentioned serve to alleviate the effort required by

the user. Allowing selection by clicking on objects is a prime

49

example. There are several other features which should be a

part of a good DBMS GUI. These are discussed below.

n. Feature 14 : Ensure the Zarlieat Detection of

Zrzora

When performing a task of any significant

complexity there are always a number of errors which can be

made. A person performing such a task for the first time will

make more errors than someone very familiar with the task.

This is the nature of performing queries against a relational

DBMS. A good DBMS must detect the errors as close to when they

occur as possible. This will tend to minimize the lost time

suffered by the user as a result of the error. It does not

make sense on a lengthy multi-step query to notify the user

after he is complete that he made a critical mistake in the

first step. The sooner the user finds out the less the cost to

him. In addition to detecting and notifying the user of the

errors, the interface should also provide the user with the

likely cause and potential solutions. These last two things

are not always possible as the system cannot easily predict

the users intentions. Where possible however, they should be

provided.

There are a number of ways the proposed interface

incorporates this feature. An example is seen when choosing

relations upon which to perform an operation. A unary

operation must have only one operand selected and a binary

operation must have two operands. A violation by the user

50

results in an error message, a brief explanation, and an

opportunity to correct the problem. A second example relates

to the join operation. If a user chooses two join attributes

which are of a different data type, then the system

immediately lets the user know. In this case an error message

explaining the error and a suggested fix is provided. These

are the types of errors which the user would be better of f

knowing about right away. As well as alerting him while the

issue is still hot in his mind, this feature protects against

jeopardizing future steps in the query.

o. Feature 15 : Automatically Make Necessay Tool

and Infozuation Available

A user interface for a DBMS should make the users

job as easy as possible. One way to do this is to know where

the user is at and what he is trying to do. With this

information the system can sometimes predict the tools and

information the user needs. This is like an assistant working

for a carpenter. If the assistant is paying attention, the

carpenter will seldom need to ask the assistant to hand him a

tool. Not having to ask and wait for a tool saves the

carpenter time. With a DBMS user interface the system is

analogous to the assistant. The user interface should provide

the user with those things he may need, without the user

explicitly having to request everything.

An example in the proposed user interface occurs

when the user requests a select operation. The user first

51

chooses a relation on the QMF work surface. The user then

clicks on "PICK ROWS" from the TOOL BOX menu. The user

interface then automatically provides three pop up windows.

One window is the text window where the row conditions are

displayed as they are built. The second window contains a list

of all the attributes from the chosen relation. The third

window provides a list of all the operations the user might

need to choose from (e.g., equals, greater than, less than,

and, or). At this point the user does not need to ask for

anything. All he needs to do is point and click, unless of

course the user desires to type in a constant value. Even in

the latter case the user interface can provide information as

described in the next example.

An example of automatically providing the user

with necessary information is present while formulating a

query as in the example above. Presume the user is selecting

rows and building the selection condition. If the user chooses

the attribute DEPARTMENT and then chooses the operation

EQUALS, the system immediately pops up a window containing the

names of the twelve departments in the organization. The user

is now able to avoid manually typing in the department name as

well as the memorization and occasional misspelling which

occur when humans must manually type values. This type of

value window is not feasible in all cases due to the inherent

uniqueness in some values. Imagine working with a relation of

ten-thousand distinct employees and doing a selection on SSN.

52

A pop up window of ten-thousand values is not very helpful. In

the proposed interface, such comparisons on attributes with

twenty or fewer distinct values in the database is suggested.

A parameter such as this however, should be able to be

customized for the user. (KUNTZ89)

p. Feature 16 : Stream-line Repetitive Actions

There are a number of actions which are frequently

performed by the user. Whenever possible a good user interface

should provide a way to cut down on the need for the user to

repeat his actions. This can be accomplished by providing

shortcuts for the veteran user or by remembering the

repetitive actions and allowing the user to re-execute them by

a single action.

A trivial yet important example in the proposed

interface involves the saving and retrieval of queries and

query fragments. The nature of queries posed by most users are

similar in structure. It saves the user a lot of time if all

he needs to do is pull up yesterday's query and make a single

change and then re-execute it. This idea is similar in

function to that mentioned in ISIS (GOLDMAN85).

Once a user establishes a pool of frequently

required queries, significant time can be saved by pulling up

an old query and making a few changes. Whenever possible this

sort of time saving capability should be provided.

53

q. Featuze 17 : Use a Default Result Fozaat

The display of data is a central and much used

part of the query formulation process. Display of data may

occur both during the query specification and after the query

is complete. Because of this and because it is desirable to

minimize the users effort, a user interface should make

displaying data an efficient and simple process. Concerns

about how the display of data should look, must not take place

during query specification. When the user is working through

the process of correctly formulating a query, he should not be

burdened with concerns of how the data should be displayed.

Once the query is at a desired state the user can pretty up

the display if desired. The functions related specifically to

how the data should be formatted should be separate from the

functions of getting the correct data. This means there should

be a default display format. There should also be a means to

manipulate the format of the displayed data once the query is

defined. These two capabilities support a separation of the

query formulation process from the process of formatting the

display of data. Some interesting research has been conducted

in the area of displaying database objects, but this area is

outside the focus of this thesis (MAIER87). This is not to say

that display of results is not important to the user

performing a query. The important point is that specialized

display of data and query formulation should be conceptually

separate activities from the users perspective.

54

An example of a simple and efficient means of

displaying data is present in the proposed DBMS user

interface. The user of the Query Management Facility (QMF) is

frequently going to be looking at data through use of the

Results window. Whenever the user requests to see the results

of the query a results window is displayed with the data in a

default format. The user then has two ways of changing the

display format. One way is to sort the data. The proposed

interface allows the user to sort the data either in ascending

or descending order. The user can also indicate multiple sort

fields. The second way the user can change the display format

is by rearranging the sequence in which the attributes are

displayed. The user can for example, cause the third column of

data to be displayed in the first column, or the last column,

or in any other position. These two methods of altering the

display format are in addition to being able to move and re-

size the Result window. These last two are functions of the

window manager and are not considered a part of the user

interface design.

C. APPLICA13ILITY TO MULTNMIA DATABAE SYSTEMS

The approach taken in the multimedia database project

implies that multimedia data can be handled in the same manner

as formatted data (LUM89). From the users perspective, a given

multimedia object (e.g., photograph) is functionally no

different from textual data, such as the text representing a

55

persons street address. The user can store, query, and display

either type data. As far as the database system is concerned,

the photograph is of an abstract data type (e.g., photo)

whereas the address is of a formatted data type (e.g.,

character). The system may require specialized ways of

displaying and manipulating multimedia data. From the users

view, this fact, does not pose any special considerations

aside from those related to data display. Further discussion

of these concepts can be found in related works (LUM89,

KEIM91, MEYER-WEGNER89, KIM91).

Given the concepts mentioned above, it is easy to see that

a multimedia database is a special case (i.e., subset) of a

traditional database. This implies that all of the criteria

and features presented in this chapter are directly applicable

to the user interface for a multimedia database system. The

unique user interface characteristics required of a multimedia

database system consist of those related to data display. The

means of displaying and working with multimedia data should be

designed as consistently and functionally similar as possible

to the means used for display of formatted data. By careful

application of the features presented in this chapter, the

designer of a multimedia database user interface can be

assured that he is designing a good user interface.

56

IV. DESCRIPTION OF GRAPHICAL QUERYNAGEMENT FACILITY

The proposed user interface is described by means of

figures contained in this chapter. These figures represent

what one might see on a computer screen while using the user

interface to perform database queries. First a general

description of the major functional parts of the interface are

described. This is followed by a description of a simple

query. This is intended to illustrate the basic functioning of

the Query Management Facility (QMF). After the simple query

the issue of complex queries is discussed along with examples.

This chapter is completed with a discussion of the aggregate

functions. The sample database schema as well as some of the

queries used as examples, were taken from a textbook written

by Elmasri and Navathe (ELMASRI89). Modifications were made to

the schema and queries to fit the purposes of this thesis.

A. MAJOR FUNCTIONAL PARTS OF INTERFACE

To perform a database query the user enters the portion of

the interface called the QMF. When using the QMF the main

retrieval window is always displayed. This main retrieval

window is presented in Figure 1.1. When a particular database

is opened, the name of the database is displayed on the top

title bar. In Figure 1.1 this name is "COMPANY DATABASE". The

"OPEN DATABASE" button on the lower menu bar is used to either

57

open a database or to open a different database in the case

one is already open.

The "TOOL BOX" area is the place where the user goes to

select any operations he is to perform. These operations fall

into two logical groups. These groups are "table" operations

and "get" operations. As you can see in Figure 1.1, the Tool

Box is arranged accordingly.

The TABLE OPERATIONS are performed on tables or in

relational terminology, relations. As discussed in Chapter 3,

all operations have one or more tables as input and a table as

output. The user has a scroll bar to get to operations not

shown. Those operations used most frequently are displayed

first. These are the relational selection, projection and

join. The names in the tool box are put in more simple terms

for the non-technical person (i.e., Pick Rows, Pick Columns).

These operations are followed by the basic set operations

union, intersection and difference. These work as one would

expect. The set operations are followed by a grouping

operator, a containment operator and then some aggregate

functions. A more thorough explanation of the behavior of

theaw operations can be achieved in the example queries which

are to follow.

The GET OPERATIONS area contains those operations which

enable the user to go out and get a resource for use within

the query. These resources include previously defined joins,

previously saved queries, and relational tables of data. From

58

this point on, these tables of data (i.e., relations) will be

referred to as tables.

The SHOW QUERY window is the area where the user sees

objects representing his query grow from the original table or

tables to the final result of his query, which is also a

table. Scroll bars are provided to facilitate control of the

area which is actually viewed in this window.

The USER ACTION bar is an area the system uses to suggest

appropriate actions to the user. The user will not look to

this area when using the HELP option or for information when

errors are detected by the system. Separate pop-up windows are

used as help windows and error handling windows.

The use of the mentioned features, as well as the

rimainder of the features of this main window will be

demonstrated by their use in the query examples to come.

B. SIMPLE QUERY lWTR INDIRECT USE OF MULTIMDIA DATA

The simple query is a good means to illustrate the screens

a user would see while performing a database query. The query

which will be performed is: "Retrieve the photograph and

address of the employee whose name is John Smith.

The user begins with the screen depicted in Figure 1.1.

Since in this example a database is already open, a pictorial

view of the database is displayed as illustrated in Figure

1.2. Whenever a database is open, the user automatically gets

59

the "SHOW PICTURE OF DATABASE" window (see Figure 1.2).

Details of this window will be discussed at a later point.

By considering the query, the user realizes that EMPLOYEE

is the table in the database (Figure 1.2) likely to contain

the information he is looking for. If there is doubt he could

explore the schema more to further convince himself or he

could just go ahead and choose the EMPLOYEE table and change

it later, if it proves to be wrong. Although this example is

trivial as far as queries go, the point is the user interface

is designed to expedite the work of the familiar user by

making everything easily available. It is also designed to

encourage the unfamiliar user to explore the database and use

trial and error without a big loss in efficiency.

The user places the cursor on the object labelled EMPLOYEE

(Figure 1.2). This causes the able to be selected and placed

into the SHOW QUERY area of the main window. The state now is

that depicted in Figure 1.3.

The user now has the table which has rows of information,

with each row representing an employee. The user knows that he

is only interested in a subset of these rows, so he selects

the "Pick Rows" operation from the Tool Box. This action

causes an "operations" pop-up window and "Pick Rows Condition"

pop-up window to appear. The Operations window contains the

comparison operators and the logical connectives the user may

need in specifying the selection condition. The Pick Row

Conditions window displays the actual selection condition as

60

specified by the user. These windows are illustrated in Figure

1.4. These windows can be moved around and so forth in

accordance with the style and techniques of the window manager

the user happens to be using. The functioning of the window

manager is independent from the DBMS user interface

(HELLER90a).

The user now has the job of communicating which rows he is

interested in (i.e., employee named John Smith). One option

the user has to go to the get data table and get a tabular

menu of the data (i.e., attribute names) of the EMPLOYEE

table. If this were an intermediate table he was working with,

this tabular window would automatically appear in a pop-up

window. At this point in the example query, there is a better

way to choose the required attribute name. As stated, the

picture of the database schema is visible to the user. The

user goes to that window and selects the SHOW FIELDS button.

This causes the fields (i.e., attributes) for each entity to

be shown. The cardinality of the relationships could be and in

this example are selected to display the cardinality of the

relationships in the database schema. All of these features

are displayed in Figure .1.5. You can see that the selected

buttons are highlighted in figure 1.5 corresponding to the

users choice of what he wants to see displayed.

The user selects the attribute labelled FNAME which

corresponds to the users first name. This is shown in Figure

1.5 As the user makes this selection the attribute name is

6'

placed into the Pick Row Conditions window (Figure 1.6). The

user continues to choose desired attribute names, comparison

operators, and logical connectives to build his selection

condition. The only items that must be physically typed by the

user are the attribute values to be used for comparison. In

cases where less then a certain number of distinct values

exist for an attribute, say fifteen, a pop-up window is

displayed to permit mouse selection of the desired value vice

typing. The certain number of distinct values is a user or

database administrator set parameter. This process of

communicating the selection condition progresses as indicated

in Figure 1.6. When the user is finished he clicks the cursor

back in the open area of the SHOW QUERY window. This brings

him the screen shown in Figure 1.7.

In Figure 1.7 the result of the Pick Rows operation is

indicated by a box placed below the EMPLOYEE box. The icon for

the Pick Rows operation is also displayed. If the user wants

to ever go back to modify this operation, he only needs to

click on the icon or the corresponding result box. At this

point two boxes appear in the Show Query window. Each box in

the window represents a table which can be awed for further

definition of the query. It should be noted that at this point

the user could choose to look at the intermediate results

represented by the newly created results box. He would do this

by clicking an the box and then clicking the DISPLAY RESULTS

button on the bottom menu bar.

62

The user has just the information about John Smith in the

intermediate results box. He views this information as

positioned in columns. The user does not want all the

information about John Smith, just his address and photo. To

trim the current result down to just the desired information

the user first clicks on the result box to choose it as an

operand and then chooses the PICK COLUMNS operation from the

Tool Box. These action are depicted in Figure 1.8. As he

chooses the operation a pop-up window appears with the

attribute names for the selected operand. The system is smart

enough to know the operand selected does not have a

corresponding object in the database picture, hence the

information in this window will be needed by the user to

specify the parameters of the chosen operation. This pop-up

window is shown in Figure 1.8

In Figure 1.9 the screen is shown after the user has

chosen the attribute names corresponding to the fields he is

interested in. It might be noted that the user has decided to

keep the users name in the output from the operation. When the

user is finished he clicks in the open area of the Show Query

window which results in the screen shown in Figure 1.10.

At this point the user has the results he wants from his

query. he clicks on the final result box and then selects the

DISPLAY RESULTS button on the bottom menu bar (Figure 1.11).

This causes a QUERY RESULTS window to pop up. The Query

Results window is shown in Figure 1.12.

63

Multimedia objects are shown in a consistent manner

whenever they are chosen for display. In Figure 1.12 you can

see that for the employees photo (i.e., EPHOTO), a button is

displayed in lieu of a value. Were this a voice recording or

a piece of video, the same thing would occur. To see, hear, or

cause the display of the multimedia object the user clicks the

button as indicated in Figure 1.12. This causes the

appropriate display, based on the definition of the abstract

data type corresponding to the multimedia object. In this case

the display is illustrated in Figure 1.13.

From the example provided by this simple query it can be

seen how simple the process of formulating a query is. The

user need focus on only one aspect of his query at a time. In

this example the user concentrated first on choosing an

appropriate table, then picking the desired rows, then picking

the desired columns and finally on displaying the data. The

user could have reversed the order of the row and column

operations. The point is the operations are simple, flexible

and responsive to the way the user thinks. Because of all the

graphical tools given to the user, the low-level of the

operations was not a labor intensive factor.

The marriage of the low-level operations and the graphical

capabilities allows the important benefits of low-level

operations without the drawbacks. Chapter 3 discusses this

point in far more detail.

64

C. SIMPLE QUERY WITH DIRECT USE OF MULTIMEDIA DATA

This example query demonstrates the direct use of

multimedia objects in the query specification process. The

query to perform is : "Retrieve the name and photograph of

employees wearing U.S. military uniforms". The user begins

with a screen such as that in Figure 2.1. The user realizes he

wants information about employees so he chooses the EMPLOYEE

object from the PICTURE OF DATABASE window as in the previous

example. The result from this is shown in Figure 2.2. In

Figure 2.2 the user has information about all the employees in

the company. The user knows he wants information on only the

employees wearing U.S. military uniforms in their photograph,

thus he chooses the PICK ROWS operation from the Tool Box.

This choice results in the screen as seen in Figure 2.3. The

user must next choose a field in the employee table on which

to operate.

Figure 2.4 illustrates the user going to the PICTURE OF

DATABASE window to select the field on which he wants to base

his row selection condition. In this case the user is shown

selecting EPHOTO (i.e., employee photo). This results in a

pop-up window entitled "MultiMedia OBJECT SELECTION". This

window is used to enable the user to enter a description of

the multimedia object he wants to select. The topic of

selecting multimedia objects is explained in a paper by Lum

(LUM89) and is further discussed in other papers by Kim

(KIM91) and Keim (KEIM91). How and why this technique is used

65

is not further discussed in this thesis. The interested reader

is directed to the references.

The user must enter a description to select the multimedia

objects corresponding to the photographs of employees wearing

U.S. military uniforms. The user decides to phrase the

description, "Person wearing a uniform". The user then clicks

the TEST button on the menu bar. This causes the appropriate

search and a pop-up window entitled, "MultiMedia OBJECT

SELECTION" results. This is all illustrated in Figure 2.5.

This window resulting from the search is designed to give the

user feedback on the progress of his multimedia object

selection. In Figure 2.5 you can see the window displays the

number of objects selected, in this case four. The window also

has one entry for each object selected in the search. Each

entry displays the original description which was stored with

the object. This can be used to assist the user in tailoring

his object description. Each entry also has a SELECT button.

These are all set to on (i.e., highlighted) when this window

is first displayed. The user has the choice of scrolling

through these entries and indicating which multimedia objects

he wants selected by toggling these SELECT buttons on or off.

The user can also choose the, "Try a Different Description"

button to iterate over the process of entering a description.

In this example say the user notes in Figure 2.5 that too many

objects were selected. The user also notes one of the

descriptions which mentions a guy wearing a Turkish Navy

66

uniform. This clues the user in on the fact that he was too

general and vague on his description of what objects he

wanted. The user selects the Try Different Description button

and is returned to the window for entering a description. The

user enters a different and more precise description. He then

tests the description with the result displayed as the two

left windows illustrated in Figure 2.6. In Figure 2.6, the

SHOW buttons are shown in the "on" state. This feature is

provided to allow the user a quick means of verifying the

correctness of his selected multimedia objects. The user has

all the windows shown in Figure 2.6 on his terminal screen and

is comfortable with his multimedia object selections. The user

chooses the QUIT button in the main description window which

automatically closes the child windows.

The user is returned back to the PICK ROW CONDITIONS

window as depicted in Figure 2.7. This is an example of a

user-to-system dialogue which is brought to a closure. The

user is now completed with the selection of the multimedia

objects associated with EPHOTO. Figure 2.7 indicates to the

user that in this case 15 EPHOTO objects were chosen.

The next step in this query involves the user selecting

the columns he wants to include in the results. This is shown

in Figure 2.8. The user then requests the display of the

results as shown in Figure 2.9.

Figure 2.10 shows the resulting QUERY RESULTS window. The

user now knows that his query is complete and decides that he

67

wants to adjust the display of his output. The important point

here is that the user did not have to consider the output

display during the query specification. This is kept as a

separate task.

In the example shown in Figure 2.10, the user desires to

have EPHOTO be displayed as the last column in the output

window. This is accomplished by selecting the column to move

by clicking on the attribute. The user then positions the

cursor where he wants the column to be placed and clicks the

mouse and the column gets moved. The user also wants the

output to be sorted differently. He wants to have the output

sorted by last name. To do this the user clicks the SORT

button on the lower menu bar which causes the SORT FIELDS pop-

up window as seen in Figure 2.10. The user then selects the

desired sort field or fields. Figure 2.11 illustrates the

output resulting from these changes. It also shows the display

of one of the multimedia objects.

D. COMPLEX QUERY

It is often difficult for a user who has a complex query

in mind, to precisely and accurately communicate that query to

the system. As discussed in Chapter 3, low-level simple

operations, along with the simple concept of data flow, and

the capabilities of a graphical environment make this process

easier.

68

A complex query will serve to demonstrate this idea. The

query which will be used is : "Find the names of employees who

work on all the projects controlled by department number

five".

Specifying this query in a linear programming language

such as SQL is difficult. Even with an experienced SQL user it

is difficult to specify the complex query. The user is forced

to fit his query into his understanding of what will and will

not work in SQL. Two possible SQL statements to specify this

query are shown in figure 3.1.

Figure 3.2 shows the final screen the user would see using

the QMF. When considering the query two things jump out at the

user. One his he needs all projects controlled by department

5. The two upper right boxes in Figure 3.2 show the results of

attaining projects controlled by department 5.

The second thing that the user sees he will need is a list

of the projects which each employee works on. He can see in

the picture of the database, exactly what fields are in what

tables. The user notes that the table WorksOn contains both

the SSN of each employee working on a project plus the related

project number. The user simply chooses this table and groups

it on ESSN. This is a logical grouping which s'ill results in

a relation. This special quality of being logically grouped is

pictorially represented with a meaningful picture of boxes

grouped within the result box.(Figure 3.2)

69

The user knows the box on the right contains all the

projects controlled by department 5. The user can now see that

he wants to select the groups of employees on the left which

contain all of the records in the box on the right. This means

that he chooses the CONTAINMENT operation from the Tool Box.

The containment operator interacts with the user in an

interactive style. It identifies exactly what type of

containment the user is interested in. This means the user

could choose only the groups containing exactly the same

tuples as those in the second operand. He could also choose

only the groups which contain at a minimum, all the tuples as

those in the second operand. The user could also define the

precise degree of overlap in terms of a discrete number of

tuples in the second operand which must match those in the

group in order for the group to be selected.

An additional feature which adds power to this containment

operation is the user is able to designate exact attributes

which are to be used in the containment operations definition

of "match". In this query example for instance, the user has

chosen to use only a single attribute from each group (i.e.,

PNO to match against PNUMBER). The dialogue environment allows

for an efficient specification by the user of his desired

intent.

To complete this query the user onLy needs to join the

result with EMPLOYEE to pick up the employee rnm.

70

Another feature which will benefit the user working with

complex queries is an ability to implode selected areas of the

picture of his query. This is a way to simplify portions which

the user no longer desires to see the detail. Once imploded,

the symbol can be thought of as a black box as far as the user

is concerned. If these are needs to be considered in detail

the user is free to explode the symbol, thus retrieving the

previous level of detail. Figure 3.3 shows the pop-up window

resulting from the users choice to CHANGE DETAIL. Figure 3.4

illustrates the user circling the area of concern after which

the user clicks on DECREASE DETAIL. Figure 3.5 illustrates the

screen resulting from this action. As you can see, a level of

detail has become hidden. The fact that the box represents a

complex set of operations is still evident by the double

framed box. This same tool can be used to build boxes

representing complex query fragments of complex query

fragments. The user is always able to go back and work with

the necessary level of detail.

A second example of a complex query is shown in Figure 4.

The query is : "List the project names for projects that

involve an employee whose last name is 'Smith' as a worker or

as a manager of the department that controls the project. Once

again the SQL is shown in Figure 4.1.

The feature to be shown with this example is the use of

the previously defined joins. When considering the query there

are two pieces of data (i.e., tables) that the user knows

71

immediately he needs. One is the employees who work on

projects. An unfamiliar user might go ahead and perform the

join necessary to create this table. A user who is familiar

with the database would know its a common join and thus he

would use the GET PREVIOUS JOIN operation to get a menu of

previously defined joins. He would do the same for Departments

which Control Projects. Figure 4.2 illustrates how this can

really expedite the definition of a complex query.

The use of previously defined queries works the same way.

The user can decide to save whatever queries he chooses to.

These Previous Queries can quickly be brought up and then

either modified and ran, or executed as they are.

Z. AGGRZGLTZ FUNCTIONS

The aggregate functions include such things as count, sum,

average, minimum and maximum. The provision of the aggregate

functions within the user interface is a real convenience to

the user. These functions do not impact the relational

completeness of the query expression methods of the interface.

They are merely a convenience. Such a convenience is a

necessary part of a good query interface.

The aggregate functions can be applied to any table

containing appropriate values upon which they can operate. The

sum function for example, must have a numeric field upon which

to perform the addition operation. The more interesting case

of applying the aggregate functions occurs when they are

72

applied to a table which has been logically grouped. This case

will be used in the following example.

The example query for demonstrating use of the aggregate

functions is : "For each project, find the average salary, the

average salary of males and females, and the number of males

and females". The user begins the query with a screen as

depicted in Figure 5.1.

The user begins the query by getting a table to work with.

The user goes to the Get Operations area of the Tool Box and

chooses the GET PREVIOUS JOIN operation. From the resulting

pop-up menu the user chooses the EMPLOYEE-WORKSON-PROJECT

join as the initial data table. By looking at the picture of

the database the meaning of and fields contained in the table

representing this join, are made clear to the user. Note that

with this one simple step the user now has all the information

he needs upon which to build his query. At this point the user

has the screen as shown in Figure 5.2.

The user has a table with a row for each case of an

employee working on a project. The user next applies the GROUP

BY operation on this table, grouping the rows by first PROJECT

and secondly SEX. This results in a SEX grouping within each

PROJECT group. The screen resulting from this grouping is

shown in Figure 5.3.

The users next action is to determine the average salary

for each project and the average salary for each sex within

each project. This is accomplished by choosing the AVERAGE

73

operation from the Tool Box. At this point the fact that the

user is applying the operation to a grouped table causes a two

step vice a one step dialogue. The first step which occurs is

user identification of the field or fields upon which to

perform. This step occurs with any application of the

function, whether with a grouped or ungrouped table. The user

specifies the target fields with a selection of the fields

from a simple pop-up menu. Only the fields which are valid for

this operation are displayed as highlighted in the pop-up

menu. This ensures the user selects only valid data types as

operands to the given aggregate function. For each field

chosen the user goes through a second step.

The second step the user goes through is necessary since

in this example the input table is logically grouped. The user

must indicate whether the operation is to be applied to the

entire table as a single logical entity or to some sub-entity.

The grouping of the table allows a combination of

possibilities. In this example the user can choose to apply

the operation to the table as a group, to groups of projects,

or to groups of sex within each project. The system is smart

enough to determine the valid possibilities thus facilitating

the users choice by offering only the valid options in a

simple pop-up menu. In this example the user applies this

operation to both to each project and to each sex group within

each project. The user then finishes applying this operation

74

which results in a screen such as that illustrated in

Figure 5.4.

In a similar fashion, the user applies the COUNT operation

to the resulting table. The result of this action is seen in

Figure 5.5.

The users only remaining action is to choose the

attributes he wants in the result table. This picking of

columns (i.e., relational projection) results in the screen

shown in Figure 5.6. The field names chosen for inclusion are

shown in the figure to demonstrate the types of default names

the system assigns to the attributes created by aggregate

functions. AVGSALARYPROJ contains the average salaries for

each project while AVGSALARYPROJSEX contains the average

salary for each sex within each project. In Figure 5.6 it can

be seen that the user is finished building the query and has

only to display the results.

Each of these aggregate functions is performed in an

interactive manner between the system and the user. There are

generally a number of possible ways to apply any given

aggregate function. Only valid options are presented to the

user thus minimizing guessing and possible confusion. The

dialogue permits the user to back out from where he is at any

point, or to proceed in the correct and desired direction.

Each user action is facilitated by a simple menu allowing the

user tL pick from options with the use of a mouse. The user

can feel comfortable that he is choosing a valid option. By

75

walking the user through the process of applying these

aggregate functions, the system is more certain to ensure the

user gets the results which he desires.

76

LUU

.4SI

c0 0o

NIS

77 1

N
0a '4

rza
0 a

H

* q4

E.g
U
H

U)

Cii

6
'4

78

46)

U)U

IL i6.. -

*g~ I .3 4

79I -

!d

4

I A V

0

.0
W4

zU

It

LEI4

soH

P4

0 4

lu C 6
HU

rzin0C

U 81

04 9L

40

1o

9243

.. I
...

0 06

>>

LL, ILA
MEoF

r.4. I

83

EQ

Il|

LU,

In0

IL

844

.....

LEI co

85 -~~

.I.

V4

11911111 i

4 I

cao
Oc t ~ .

III m

m I- ~ * 4

LEI

87 -.... ~~c.<

U.aJ

U

I
U

- ~. --~ ~JII9 _ a*
U1

a

Ii K' U

4J
CI
S

* 24ill .9'

0 '8 a
U 3 HI

4J
*64

34

U

1 1
Em a.I
~

- - - 14

U Cl

I-I

'4

S
54

h

88

4

4)
_______________ 0

4)
I-I

0
___________ 6

U

EIEJ __

4)
0
6
14

q4

a
H

02
H 4)

.14

N U
A
6

I-I1~
Mm ('2a ~ u-I

'4

h

89

C6J

.... .. .

IcI

0:r
LU4J

U II

Sl II'
966

FE V4

91i
h

91

SI A VA~

A0

itsi

Ell

92

4 J=14b.Li 0

4,
'-4

0

rzi 6o '4

0
* A

.IJ

.94

El
(U)

H

6
"4

* CI)

V

___ 6
'4

I.

93

a

94'

aIJ

IAI

r=4!to

goI

C4

95

2 ca
4 U1

966

LU 8

5 u
cc5

LEI gillA

97g

z lot

all

98

626

IIi

0

adUP

"4

cla

1001

Zz U

i:u w

II
0 K

*4 I-

5t;

101

COl

00

102

14 a

66

1030

Fri
..........

i
.9

64

LEI

104

ImI

UAA

10m4

z
U2

U2 72 96

oz Oz ;54

21.1
0A mt K I

z .z, 96

ge 1" 040

100'

4A 0

uii

II Ili

LLI

Ilia

1093

I
LLI.

...........

'4i

Elk

H91

I
I
a

3 a
0

.UI
4Ja

E 6
4J

* aI

6
'4

v~ti

*11
El ~mi

0'

110

I

I.

-' | 4

IIIl

r* JO

in V

II

1122

I

ILI

A II!1

11iw0

! ~

! ! .
-" tJEU

11m

V. CONCLUSIONS

A. APPLICABILITY OF APPROACH

The graphical user interface developed in this thesis has

been designed as part of a research project on multimedia

database. This fact does not imply multimedia specific

limitations on the applicability of the approach. The proposed

database GUI is applicable to any relational DBMS. The goals

in researching and designing this interface included an aim at

ensuring general relational database applicability.

The storage, retrieval and manipulation of multimedia

objects can be handled nicely within a relational framework

(LUM89). The intent of the multimedia database project is to

enable multimedia to be handled in a manner identical to

structured data. Specific multimedia data are no more than

values belonging to an abstract data type (e.g., photo). The

values simply fall within the domain of an attribute of a

relational tuple. The general user interface for a relational

DBMS need only add the special capabilities necessary for

working with multimedia data in order to be a functional

multimedia database user interface. In other words, the

functionality of a user interface for a relational multimedia

database is a superset of the functionality required for a

traditional relational DBMS. The user interface proposed in

this thesis provides such a superset.

114

B. STRZNGTHS AND LIMITATIONS OF APPROACH

1. Strengths of Approach

The Query Management Facility (QMF) presented in

Chapter 4 provides the reader with a view of a good user

interface for enabling a user to express queries against a

relational database. The number one strength in the approach

presented is its foundation in sound user interface principles

and its use of the latest tools available and practical from

currently available technology. The features which make up the

interface have been carefully considered to provide the best

possible interface. The user interface meets all of the

criteria presented in Section A of Chapter 3, by which we can

evaluate a user interface. Compliance with each of these

criterion is discussed in the corresponding section below.

a. Criterion 1 : The Propoaed DMS Graphical User

Interface (GUI) Must Constitute an Improvement Over Zxisting

DBMS Interfaces

The proposed user interface constitutes an

improvement over existing database user interfaces. This is

the most difficult criterion to argue due to its inherent

vagueness. While we do not have a standard metric by which we

can measure the proposed interface against other interfaces we

can make some general observations. These observations provide

a reasonable measure of confidence that the interface succeeds

in meeting this criterion.

115

User interfaces seen on databases today were never

designed from the ground up to take advantage of today's

latest hardware, software, and user interface capabilities.

Most databases in use today have been around for some time.

When originally implemented these databases used the hardware

and software technology available at the time. This included

linear query languages as well as a text based interaction

style. Then hardware and software as well as experience with

man-machine interaction began to evolve. This included such

things as high resolution bit-mapped screens, the wide-spread

use of the mouse, faster processors, windowing technology,

graphics software, and graphical user interface capabilities

and concepts. The companies with existing database products

had large investments tied up in their existing software as

well as large already established customer bases. Neither of

these factors are conducive to rapid or radical evolution of

software. This scenario lead to an incremental inclusion of

pieces of technology to at leawt give the appearance with

version upgrades, of user friendly, up-to-date user

interfaces. As an example, there seemed to be a time when many

of the database user interfaces were changing in order to

introduce an interface with mouse controlled selection from

pull-down or pop-up menus. The point is that user interfaces

available for databases today were not designed from the

ground up to take advantage of the latest and ever improving

technology and user interface capabilities available. The user

116

interface proposed in this thesis is a definite exception. The

observation that this interface is purposefully designed to

integrate and take advantage of the latest and greatest

capabilities is reason to argue that it is an improvement over

existing interfaces.

b. Criterion 2 : The Proposed DBMS GUI Must Include

the Integration of Applicable GUI Concepts and Capabilities

The user interface presented in this thesis

includes the integration of those GUI concepts and user

interface capabilities which contribute in a positive way to

the interface. By surveying the literature available on this

subject as well as the hardware and software available the

goal was to consider all technology available. The absence in

the user interface of such things as voice recognition and

voice synthesis is not by careless omission. The inclusion of

windowing techniques as well as the use of the mouse result

from considering their usefulness for the task. These as well

as many other user interface capabilities were considered.

Only those capabilities contributing in a positive way were

chosen to be integrated into the user interface.

a. Criterion 3 : The proposed DBMS GUI Must Support

A Real-World to Database Mapping Mechanism

The proposed user interface supports a real-world

to database mapping. The pictorial view of the database

provided to the user enables him to gain a comfortable feel

for the structural content of his database. The increased

117

detail which is available at the users request is helpful in

responding to the users need for more detailed information.

The actual values in the database are easy to gain access to

and database browsing is encouraged. Chapter 3 provides a more

detailed explanation of the features which contribute to

meeting this criterion.

d. Criterion 4 : Theproposed DBMS GUI Must Support

Flexible zxpression of Query

The user interface presented in this thesis

supports the flexible expression of the users' query. This is

a key advantage of the "low-level, simple operation" approach

taken in this interface. Early database user interfaces were

non-graphical in nature. In such an environment anything

required of the user at a low-level necessarily implied

undesirable amounts of tedious work (i.e., key-punching). It

is no wonder that in the non-graphical environment designers

of interfaces and query as well as general purpose programming

languages decided to move away from anything low-level.

Things have changed. Graphical user interfaces are

here to stay. There must be a re-thinking of earlier decisions

to move away from low-level. In some cases earlier decisions

are still valid. GUI's do not mean we should move from high-

level procedural languages such as Ada, back to assembly

language. In the case of database queries GUI's do require a

re-thinking. With database queries there are advantages to the

low-level approach. The approach, for example, facilitates the

118

users mental process of expressing the complex query. Further

explanations of advantages are included in Chapter 3. The

disadvantage of low-level query expression is no longer valid.

It used to be that query expression at a level similar to the

relational algebra implied tedious, time consuming work. Now

with GUI capabilities, this process is greatly accelerated and

made more easy. The user now can in many cases point and

shoot, using the mouse. He can point at graphical objects on

the screen and at menu options. There is seldom a need to key

in anything. Additionally, the entire process is accompanied

with meaningful pictures which give the user immediate and

meaningful feedback. These factors combine in making low-level

query expression a useful and highly beneficial technique. At

this low-level, a great deal of flexibility is provided to the

user to express the query in whatever way he thinks about the

query.

a. Criterion 5 : The proposed DBMS GUI Must Comply

With Known User Interface Prinelples

The proposed user interface complies with known

user interface principles. Section A of Chapter 2 presents a

couple lists which provide a summary of the types of

principles which are commonly considered and applied to user

interface design. These lists include such things as

consistency, informative feedback, simple error handling, easy

reversal of actions, reduction in short-term memory load,

intuitiveness, flexibility and use of visual cues. Compliance

119

with these and other such principles is attempted throughout

the user interface which is presented. In some cases the

attempts are specifically mentioned and in many other cases,

it is obvious.

f. Czite:on 6 : The Pzoposed DBMS GUI Must be

Zxtensible

The user interface presented in this thesis is

extensible to the degree a specification can be extensible.

The specification intentionally makes no reference to a

particular windowing standard, window manager, or user

interface standard. Extensibility is more important to

consider when making implementation decisions. This

specification was carefully constructed so as to make it as

implementation independent as possible. The specification

lends itself towards the modularity required in order to

ensure an extensible implementation.

2. Limitations of Approach

The user interface presented in this thesis is

constrained by its applicability to the relational data model.

There are other data models such as the hierarchical, the

network and the object oriented data models. The decision to

assume the relational data model is not to say that these

other models are not useful and in some cases even more

suitable for certain applications. The research findinqs

presented in Chapter 3 are for the most part applicable to a

query management facility regardless of the underlying data

120

model. Regardless of the data model upon which a database is

built, the user must understand the relationship between the

real world and his specific database. The user must also be

given the best means of expressing his complex queries. The

user must also be given the tools to allow graphical

manipulation and simple operations to ensure his efficient and

correct formulation of queries. These, as well as many of the

other objectives in designing a relational query facility,

carry over to query facilities for other data models. The

point is that the specific interface proposed is constrained

in its applicability but the principles underlying its design

are not.

Another limitation is not so much a limitation of this

approach as it is specified, but a limitation created by the

lack of an overall user interface specification. Prior to

embarking on the query specification aspect of this thesis, it

was felt that the query specification portion of a database

user interface involved the biggest and most difficult

challenges. It is for this reason that this portion of the

interface was tackled first. The limitation stems from the

fact that the entire database user interface is not yet

completely specified. This leaves the possibility that

specification and implementation of other related user

interface components of the database may run into constraints,

the solutions of which may in some way impact the design or

implementation of the Query Management Facility. This idea

121

raises the notion of whether the design specification of a

component of a larger system can be considered complete until

all the components are specified. It would be a comfortable

feeling to know that in the end all the components will

integrate nicely together. Perhaps this being part of a

research project mitigates this concern.

C. FUTURZ WORK

1. Implementation of the Proposed Query Management

Facility

This thesis presents a specification for the user

interface for a query management facility of a relational

database. It remains to implement this specification. The

specification is specific in idea but not in the detail of

implementation. This lack of specifics is to enable the

implementor as much flexibility as possible in choosing the

software and hardware tools to use as well as in putting his

own touch on the finished product.

Amongst the more important implementation decisions

are those relating to software. These include the following:

What operating system and what version operating system will

be used(e.g., newest version of Unix)?, What programming

language will be used (e.g.,K&R C, ANSI C, C++)?, What

windowing system will be used (e.g.,X-window) (MANDELKERN90,

SHEIN90)?, What high-level development environment if any,

will be used (MANDELKERN90, SHEIN90)?, What look and feel user

122

interface standard will be used (e.g.,Open Look, Motif)

(BOWEN90, HELLER90a, HELLER90b)?

The implementor must also consider various hardware

decisions. Included among these are: Is this to be a multi-

platform system ?, What Input/Output devices will work with

what platforms?, What software will work on what platforms ?

A number of trade-offs will have to be made. These

trade-offs should be made in a conscious manner and documented

for future designers and maintainers. Considerations such as

portability, availability, compatibility, affordability,

learnability, and supportability will likely force some

painful and less then ideal decisions.

2. Design and Implementation of Remaining User Interface

Components for Database

As mentioned already there are three major facilities

which were considered (i.e.,SMF,QMF,RMF). Of these three, only

the QMF has been considered in detail. This leaves the task of

creating a detailed specification of the other two facilities.

A good user interface must contain a complete set of

good components. Each component must lend itself

synergistically to the aggregation of a complete package.

There should not be a query management facility which works

via graphical direct manipulation and a report management

facility which is based on hierarchical textual based menus.

Regardless of how good each component is, they just do not fit

together. The following list contains the common elements

123

which must be consistent throughout the database user

interface :

1. Maximum use of the graphical direct manipulation

paradigm.

2. Design which lends itself to a windowing environment.

3. Design consistent with sound user interface principles
(e.g., those mentioned in Section A of Chapter 2).

4. Design which includes the ability to work with the
Relational Data Model.

An interface component which abides by these

guidelines will integrate nicely with the query management

interface which has been proposed.

3. Continuing Incorporation of Evolving Technology

The future certainly will see continued advances in

hardware and software technology as well as new and improved

techniques for man-machine interface. The extensibility

mentioned in Criterion 6 of Chapter 3 is intended to enable

the user interface to grow and change along with this

advancing technology.

124

LIST OF RZFZRENCIS

Agrawal R., Gehani N.H., Srinivasan J., OdeView The
Graphical Interface to Ode, pp. 34-43, Proc. ACM SIGMOD 1990,
International Conference on Management of Data, Atlantic City,
May, 1990.

Anderson T.L., Ecklund E.F., Maier D., The PROTEUS
Bibliography : Representation and Interactive Display in
Databases, SIGMOD Record, Vol 15, No 3, September, 1986.

Bowen B., Open Look vs. Motif, The Battle for GUI Dominance,
Sun Tech Journal, Vol 3, Num 6, December 1990.

Brown J.R., Cunningham S., Programming the User Interface,
Principles and Examples, Published by John Wiley and Sons,
1989.

Bryce D., Hull R., SNAP : A Graphics Based Schema Manager, pp.
151-164, Proc. IEEE 2nd International Conference on Data
Engineering, Los Angeles, California, February, 1986.

Codd E.F., Relational Completeness of Database Sublanguages,
In Database Systems, pp. 65-98, Prentice-Hall, 1972.

Comaford C., Graphical User Interfaces - Keep Them Sleek and
Simple, Info World, March, 1991.

Elmasri R.A., Larson J.A., A Graphical Query Facility for ER
Databases, Proc. 4th International Conference, Entity-
Relationship Approach, Chicago, October, 1985.

End User Interfaces, Introduction, SIGMOD Record, Vol 18.,
No 1, p. 23, March, 1989.

Goldman K.J., Goldman S.A., Kanellakis P.C., Zdonik S.B.,
ISIS: Interface for a Semantic Information System, pp. 328-
342, ACM SIGMOD Proceedings of the International Conference on
the Management of Data, Austin, Texas, May, 1985.

Gyssens M., Paredaens J., Gucht D.V., A Graph-Oriented Object
Model for Database End-User Interfaces, pp. 24-33, Proc. ACM
SIGMOD 1990, International conference on Management of Data,
Atlantic City, May, 1990.

125

Heller D., Look & Feel, Sun Tech Journal, Vol 3, Num 6,
December 1990(a).

Heller D., Objects and Widgets, Sun Tech Journal, Vol 3, Num
6, December 1990(b).

Keim D., Kim K.C., Lum V.Y., A Friendly and Intelligent
Approach to Data Retrieval in a Multimedia Database, Tech
Report NPSCS-91-010, Computer Science Department, Naval
Postgraduate School, Monterey, California, March, 1991.

Kim K.C., Lum V.Y., Towards Intelligent Data Retrieval in
Multimedia Databases, Tech Report NPSCS-91-009, Computer
Science Department, Naval Postgraduate School, February, 1991.

Kuntz M., Melchert R., Pasta-3"s Graphical Query Language:
Direct Manipulation, Coopertive Queries, Full Expressive
Power, pp. 97-105, Proc. of 15th International Conference on
Very Large Data Bases, Amsterdam, The Netherlands, August,
1989.

Leong M.K., Sam S., Narasimhalu D., Towards a Visual Language
for an Object Oriented Multi-Media Database System, Visual
Database Systems, Elsevier Science Publishers B. V. (North-
Holland), 1989.

Lum V.Y., Meyer-Wegner K., A Multimedia Database Management
System Supporting Contents Search In Media Data, Technical
Report, NPS52-89-020, Computer Science Department, Naval
Postgraduate School, Monterey, California, March, 1991.

Maier D., Nordquist P., Grossman M., Displaying Database
Objects, pp. 15-30, Proc. of the 1st International Conference
on Expert Database Systems, Charleston, South Carolina, April,
1986.

Mandelkern D., A Guide to High-Level User Interface
Development Tools, Sun Expert, Vol 1, Num 3, January, 1990.

Meyer-Wegner K., Lum V.Y., Wu C.T., Image Management in a
Multimedia Database System, Proc. of the IFIP TC 2/WG 2.6
Working Conference on Visual Database Systems, Tokyo, Japan,
3-7 April, 1989.

Miyao J., Hirakawa N., Kikuno T., Yoshida N., Design of a Form
Interface Language in a Database System Aide, pp. 26-27, Proc.
of the IEEE Workshop on Languages for Automation, Vienna,
Austria, August, 1987.

126

Miyao J., Tominaga K., Kikuno T., Yoshida N., Design of a High
Level Query Language For End Users, pp. 27-29, Proc. of the
IEEE Workshop on Languages for Automation, Kent Ridge,
Singapore, August, 1986.

Rogers T.R., Cattell G.G., Entity-Relationship Database User
Interfaces, Readings in Database Systems, Ed. by Stonebraker
M., 1988.

Shein B., Primal Screens, Sun Expert, Vol 1, Num 3, January,
1990.

Shneiderman B., Designing the User Interface, Published by
Addison-Wesley, 1987.

Shu N.C., Visual Programming : Perspectives and Approaches,
IBM Systems Journal, Vol 28, No 4, 1989.

Smith S.L., Mosier J.N., Guidelines for Designing User
Interface Software, Report prepared by Mitre Corporation for
the USAF, ESD-TR-86-278, August, 1986.

Ullman J.D., Principles of Database Systems, Computer Science
Press, 1982.

Wartik S.P., Penedo M.H., FILLIN A Reusable Tool for Form-
Oriented Software, IEEE Software 6, No 3, 1986.

Wegner L.M., ESHER - Interactive. Visual Handling of Complex
Objects in the Extended jecond NF Database Model, 1989, Visual
Database Systems, Elsevier Science Publishers B. V. (North-
Holland), 1989.

Wong H.K.T., Kuo I., GUIDE : Graphical User Interface For
Database Exploration, pp. 22-32, Proc. of 8th Conference on
Very Large Databases, Mexico City, 1982.

Wu C.T., Hsiao D.K., Implementation of Visual Database
Interface Using an Object Oriented Language, Proc. of the IFIP
TC 2/WG 2.6 Working Conference on Visual Database Systems,
Tokyo, Japan, 3-7 April, 1989.

Zdonik S.B., Maier D., Interfaces, Introduction to Chapter 8,
Readings in Object-Oriented Database Systems, Morgan Kaufmann
Publishers, Inc., 1990.

Zhang Z.Q., Mendelzon A.O., A Graphical Query Language for
Entity-Relationship Databases, Entity-Relationship Approach to
Software Engineering, Elsevier Science Publishers B. V. (North
Holland), 1983.

127

Zloof M., Query by Example, pp. 431-438, AFIPS, Proceedings of
the National Computer Conference, Volume 44, 1975.

128

INIT IAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, California 93943-5100

Center for Naval Analysis
4401 Ford Ave.
Alexandria, Virginia 22302-0268

John Maynard
Code 42
Command and Control Departments
Naval Ocean Systems Center
San Diego, California 92152

Dr. Sherman Gee
ONT-221
Chief of Naval Research
880 N. Quincy Street
Arlington, Virginia 22217-5000

Leah Wong
Code 443
Command and Control Departments
Naval Ocean Systems Center
San Diego, California 92152

Professor Vincent Y. Lum 2
Code Cs m
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

129

Capt. Charles B. Peabody
Unit 2, Bramber H,
Rt 16B, Rochester, NH 03867

Professor C. Thomas Wu
Code CsWu
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

Dr. Bernhard Holtkamp
University of Dortmund
Software Technology
P.O. Box 500
D-4600 Dortmund 50 / GERMANY

Professor Klaus Meyer-Wegener
University of Erlangen-Nuernberg
IMMD VI, Martensstr. 3,
5250 Erlangen / GERMANY

Commandant of the Marire Corps
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

130

